Spaces:
Running
Running
MilesCranmer
commited on
Commit
•
73042d9
1
Parent(s):
88a78a4
Add test data generator to app
Browse files- gui/app.py +69 -45
gui/app.py
CHANGED
@@ -14,60 +14,76 @@ empty_df = pd.DataFrame(
|
|
14 |
}
|
15 |
)
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
def greet(
|
19 |
file_obj: Optional[tempfile._TemporaryFileWrapper],
|
20 |
-
|
|
|
|
|
21 |
niterations: int,
|
22 |
maxsize: int,
|
23 |
binary_operators: list,
|
24 |
unary_operators: list,
|
25 |
force_run: bool,
|
26 |
):
|
27 |
-
if
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
)
|
54 |
-
if col_to_fit not in df.columns:
|
55 |
-
return (
|
56 |
-
empty_df,
|
57 |
-
f"The column to predict, {col_to_fit}, is not in the file!"
|
58 |
-
f"I found {df.columns}.",
|
59 |
-
)
|
60 |
-
if len(df) > 10_000 and not force_run:
|
61 |
-
return (
|
62 |
-
empty_df,
|
63 |
-
"You have uploaded a file with more than 10,000 rows. "
|
64 |
-
"This will take very long to run. "
|
65 |
-
"Please upload a subsample of the data, "
|
66 |
-
"or check the box 'Ignore Warnings'.",
|
67 |
-
)
|
68 |
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
71 |
|
72 |
model = pysr.PySRRegressor(
|
73 |
bumper=True,
|
@@ -106,7 +122,15 @@ def main():
|
|
106 |
description="Symbolic Regression with PySR. Watch search progress by following the logs.",
|
107 |
inputs=[
|
108 |
gr.File(label="Upload a CSV File"),
|
109 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
gr.Slider(
|
111 |
minimum=1,
|
112 |
maximum=1000,
|
|
|
14 |
}
|
15 |
)
|
16 |
|
17 |
+
test_equations = {
|
18 |
+
"Complex Polynomial": "3*x^3 + 2*x^2 - x + sin(x)",
|
19 |
+
"Exponential and Logarithmic": "exp(-x) + log(x+1)",
|
20 |
+
"Trigonometric Polynomial": "sin(x) + cos(2*x) + tan(x/3)",
|
21 |
+
"Mixed Functions": "sqrt(x)*exp(-x) + cos(pi*x)",
|
22 |
+
"Rational Function": "(x^2 + 1) / (x - 2)",
|
23 |
+
}
|
24 |
+
|
25 |
+
|
26 |
+
def generate_data(equation: str, num_points: int, noise_level: float):
|
27 |
+
x = np.linspace(-10, 10, num_points)
|
28 |
+
s = test_equations[equation]
|
29 |
+
for (k, v) in {
|
30 |
+
"sin": "np.sin",
|
31 |
+
"cos": "np.cos",
|
32 |
+
"exp": "np.exp",
|
33 |
+
"log": "np.log",
|
34 |
+
"tan": "np.tan",
|
35 |
+
"^": "**",
|
36 |
+
}.items():
|
37 |
+
s = s.replace(k, v)
|
38 |
+
y = eval(s)
|
39 |
+
noise = np.random.normal(0, noise_level, y.shape)
|
40 |
+
y_noisy = y + noise
|
41 |
+
return pd.DataFrame({"x": x}), y_noisy
|
42 |
+
|
43 |
|
44 |
def greet(
|
45 |
file_obj: Optional[tempfile._TemporaryFileWrapper],
|
46 |
+
test_equation: str,
|
47 |
+
num_points: int,
|
48 |
+
noise_level: float,
|
49 |
niterations: int,
|
50 |
maxsize: int,
|
51 |
binary_operators: list,
|
52 |
unary_operators: list,
|
53 |
force_run: bool,
|
54 |
):
|
55 |
+
if file_obj is not None:
|
56 |
+
if len(binary_operators) == 0 and len(unary_operators) == 0:
|
57 |
+
return (
|
58 |
+
empty_df,
|
59 |
+
"Please select at least one operator!",
|
60 |
+
)
|
61 |
+
# Look at some statistics of the file:
|
62 |
+
df = pd.read_csv(file_obj)
|
63 |
+
if len(df) == 0:
|
64 |
+
return (
|
65 |
+
empty_df,
|
66 |
+
"The file is empty!",
|
67 |
+
)
|
68 |
+
if len(df.columns) == 1:
|
69 |
+
return (
|
70 |
+
empty_df,
|
71 |
+
"The file has only one column!",
|
72 |
+
)
|
73 |
+
if len(df) > 10_000 and not force_run:
|
74 |
+
return (
|
75 |
+
empty_df,
|
76 |
+
"You have uploaded a file with more than 10,000 rows. "
|
77 |
+
"This will take very long to run. "
|
78 |
+
"Please upload a subsample of the data, "
|
79 |
+
"or check the box 'Ignore Warnings'.",
|
80 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
+
col_to_fit = df.columns[-1]
|
83 |
+
y = np.array(df[col_to_fit])
|
84 |
+
X = df.drop([col_to_fit], axis=1)
|
85 |
+
else:
|
86 |
+
X, y = generate_data(test_equation, num_points, noise_level)
|
87 |
|
88 |
model = pysr.PySRRegressor(
|
89 |
bumper=True,
|
|
|
122 |
description="Symbolic Regression with PySR. Watch search progress by following the logs.",
|
123 |
inputs=[
|
124 |
gr.File(label="Upload a CSV File"),
|
125 |
+
gr.Radio(list(test_equations.keys()), label="Test Equation"),
|
126 |
+
gr.Slider(
|
127 |
+
minimum=10,
|
128 |
+
maximum=1000,
|
129 |
+
value=100,
|
130 |
+
label="Number of Data Points",
|
131 |
+
step=1,
|
132 |
+
),
|
133 |
+
gr.Slider(minimum=0, maximum=1, value=0.1, label="Noise Level"),
|
134 |
gr.Slider(
|
135 |
minimum=1,
|
136 |
maximum=1000,
|