MilesCranmer commited on
Commit
78a18f0
·
1 Parent(s): d7b393d

Give sqrtm operators to work with negatives

Browse files
Files changed (2) hide show
  1. README.md +11 -2
  2. julia/operators.jl +2 -0
README.md CHANGED
@@ -104,8 +104,12 @@ Now, the symbolic regression code can search using this `special` function
104
  that squares its left argument and adds it to its right. Make sure
105
  all passed functions are valid Julia code, and take one (unary)
106
  or two (binary) float32 scalars as input, and output a float32. Operators
107
- are automatically vectorized. We also define `extra_sympy_mappings`,
108
- so that the SymPy code can understand the output equation from Julia.
 
 
 
 
109
 
110
  One can also edit `operators.jl`. See below for more options.
111
 
@@ -132,6 +136,10 @@ of these and other valid operators are stated below. You can also
132
  define your own in `operators.jl`, and pass the function
133
  name as a string.
134
 
 
 
 
 
135
  **Binary**
136
 
137
  `plus`, `mult`, `pow`, `div`, `greater`, `mod`, `beta`, `logical_or`,
@@ -145,6 +153,7 @@ name as a string.
145
  `logm` (=log(abs(x) + 1e-8)),
146
  `logm10` (=log10(abs(x) + 1e-8)),
147
  `logm2` (=log2(abs(x) + 1e-8)),
 
148
  `log1p`,
149
  `sin`,
150
  `cos`,
 
104
  that squares its left argument and adds it to its right. Make sure
105
  all passed functions are valid Julia code, and take one (unary)
106
  or two (binary) float32 scalars as input, and output a float32. Operators
107
+ are automatically vectorized.
108
+
109
+ We also define `extra_sympy_mappings`,
110
+ so that the SymPy code can understand the output equation from Julia,
111
+ when constructing a useable function. This step is optional, but
112
+ is necessary for the `lambda_format` to work.
113
 
114
  One can also edit `operators.jl`. See below for more options.
115
 
 
136
  define your own in `operators.jl`, and pass the function
137
  name as a string.
138
 
139
+ Your operator should work with the entire real line (you can use
140
+ abs(x) - see `logm`); otherwise
141
+ the search code will be slowed down with domain errors.
142
+
143
  **Binary**
144
 
145
  `plus`, `mult`, `pow`, `div`, `greater`, `mod`, `beta`, `logical_or`,
 
153
  `logm` (=log(abs(x) + 1e-8)),
154
  `logm10` (=log10(abs(x) + 1e-8)),
155
  `logm2` (=log2(abs(x) + 1e-8)),
156
+ `sqrtm` (=sqrt(abs(x)))
157
  `log1p`,
158
  `sin`,
159
  `cos`,
julia/operators.jl CHANGED
@@ -8,7 +8,9 @@ div(x::Float32, y::Float32)::Float32 = x/y
8
  logm(x::Float32)::Float32 = log(abs(x) + 1f-8)
9
  logm2(x::Float32)::Float32 = log2(abs(x) + 1f-8)
10
  logm10(x::Float32)::Float32 = log10(abs(x) + 1f-8)
 
11
  neg(x::Float32)::Float32 = -x
 
12
  function greater(x::Float32, y::Float32)::Float32
13
  if x > y
14
  return 1f0
 
8
  logm(x::Float32)::Float32 = log(abs(x) + 1f-8)
9
  logm2(x::Float32)::Float32 = log2(abs(x) + 1f-8)
10
  logm10(x::Float32)::Float32 = log10(abs(x) + 1f-8)
11
+ sqrtm(x::Float32)::Float32 = sqrt(abs(x))
12
  neg(x::Float32)::Float32 = -x
13
+
14
  function greater(x::Float32, y::Float32)::Float32
15
  if x > y
16
  return 1f0