Spaces:
Running
Running
MilesCranmer
commited on
Commit
·
78cf882
1
Parent(s):
81463ee
Clean up API; make const optimization random
Browse files- julia/sr.jl +18 -14
- pysr/sr.py +18 -33
julia/sr.jl
CHANGED
@@ -684,18 +684,20 @@ function optimizeConstants(member::PopMember)::PopMember
|
|
684 |
x0 = getConstants(member.tree)
|
685 |
f(x::Array{Float32,1})::Float32 = optFunc(x, member.tree)
|
686 |
if size(x0)[1] == 1
|
687 |
-
|
688 |
else
|
689 |
-
|
|
|
690 |
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
end
|
698 |
end
|
|
|
699 |
if Optim.converged(result)
|
700 |
setConstants(member.tree, result.minimizer)
|
701 |
member.score = convert(Float32, result.minimum)
|
@@ -736,14 +738,16 @@ function fullRun(niterations::Integer;
|
|
736 |
# Spawn threads to run indepdent evolutions, then gather them
|
737 |
@inbounds Threads.@threads for i=1:nthreads
|
738 |
allPops[i] = run(allPops[i], ncyclesperiteration, verbosity=verbosity)
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
|
743 |
-
|
744 |
-
|
|
|
745 |
end
|
746 |
end
|
|
|
747 |
end
|
748 |
|
749 |
# Get best 10 models from each evolution. Copy because we re-assign later.
|
|
|
684 |
x0 = getConstants(member.tree)
|
685 |
f(x::Array{Float32,1})::Float32 = optFunc(x, member.tree)
|
686 |
if size(x0)[1] == 1
|
687 |
+
algorithm = Optim.Newton
|
688 |
else
|
689 |
+
algorithm = Optim.NelderMead
|
690 |
+
end
|
691 |
|
692 |
+
result = Optim.optimize(f, x0, algorithm(), Optim.Options(iterations=100))
|
693 |
+
# Try other initial conditions:
|
694 |
+
for i=1:nrestarts
|
695 |
+
tmpresult = Optim.optimize(f, x0 .* (1f0 .+ 5f-1*randn(Float32, size(x0)[1])), algorithm(), Optim.Options(iterations=100))
|
696 |
+
if tmpresult.minimum < result.minimum
|
697 |
+
result = tmpresult
|
698 |
end
|
699 |
end
|
700 |
+
|
701 |
if Optim.converged(result)
|
702 |
setConstants(member.tree, result.minimizer)
|
703 |
member.score = convert(Float32, result.minimum)
|
|
|
738 |
# Spawn threads to run indepdent evolutions, then gather them
|
739 |
@inbounds Threads.@threads for i=1:nthreads
|
740 |
allPops[i] = run(allPops[i], ncyclesperiteration, verbosity=verbosity)
|
741 |
+
for j=1:allPops[i].n
|
742 |
+
if rand() < 0.1
|
743 |
+
allPops[i].members[j].tree = simplifyTree(allPops[i].members[j].tree)
|
744 |
+
allPops[i].members[j].tree = combineOperators(allPops[i].members[j].tree)
|
745 |
+
if shouldOptimizeConstants
|
746 |
+
allPops[i].members[j] = optimizeConstants(allPops[i].members[j])
|
747 |
+
end
|
748 |
end
|
749 |
end
|
750 |
+
bestSubPops[i] = bestSubPop(allPops[i], topn=topn)
|
751 |
end
|
752 |
|
753 |
# Get best 10 models from each evolution. Copy because we re-assign later.
|
pysr/sr.py
CHANGED
@@ -5,48 +5,31 @@ import pathlib
|
|
5 |
import numpy as np
|
6 |
import pandas as pd
|
7 |
|
8 |
-
# Dumped from hyperparam optimization
|
9 |
-
default_alpha = 1.0#0.1
|
10 |
-
default_fractionReplaced = 0.10
|
11 |
-
default_fractionReplacedHof = 0.10
|
12 |
-
default_npop = 1000
|
13 |
-
default_weightAddNode = 1
|
14 |
-
default_weightInsertNode = 3
|
15 |
-
default_weightDeleteNode = 3
|
16 |
-
default_weightMutateConstant = 10
|
17 |
-
default_weightMutateOperator = 1
|
18 |
-
default_weightRandomize = 1
|
19 |
-
default_weightSimplify = 0.01
|
20 |
-
default_weightDoNothing = 1
|
21 |
-
default_result = 1
|
22 |
-
default_topn = 10
|
23 |
-
default_parsimony = 1e-4
|
24 |
-
default_perturbationFactor = 1.0
|
25 |
-
|
26 |
def pysr(X=None, y=None, threads=4,
|
27 |
niterations=100,
|
28 |
ncyclesperiteration=300,
|
29 |
binary_operators=["plus", "mult"],
|
30 |
unary_operators=["cos", "exp", "sin"],
|
31 |
-
alpha=
|
32 |
annealing=True,
|
33 |
-
fractionReplaced=
|
34 |
-
fractionReplacedHof=
|
35 |
-
npop=
|
36 |
-
parsimony=
|
37 |
migration=True,
|
38 |
hofMigration=True,
|
39 |
shouldOptimizeConstants=True,
|
40 |
-
topn=
|
41 |
-
weightAddNode=
|
42 |
-
weightInsertNode=
|
43 |
-
weightDeleteNode=
|
44 |
-
weightDoNothing=
|
45 |
-
weightMutateConstant=
|
46 |
-
weightMutateOperator=
|
47 |
-
weightRandomize=
|
48 |
-
weightSimplify=
|
49 |
-
perturbationFactor=
|
|
|
50 |
timeout=None,
|
51 |
equation_file='hall_of_fame.csv',
|
52 |
test='simple1',
|
@@ -84,6 +67,7 @@ def pysr(X=None, y=None, threads=4,
|
|
84 |
:param shouldOptimizeConstants: bool, Whether to numerically optimize
|
85 |
constants (Nelder-Mead/Newton) at the end of each iteration.
|
86 |
:param topn: int, How many top individuals migrate from each population.
|
|
|
87 |
:param weightAddNode: float, Relative likelihood for mutation to add a node
|
88 |
:param weightInsertNode: float, Relative likelihood for mutation to insert a node
|
89 |
:param weightDeleteNode: float, Relative likelihood for mutation to delete a node
|
@@ -141,6 +125,7 @@ const fractionReplacedHof = {fractionReplacedHof}f0
|
|
141 |
const shouldOptimizeConstants = {'true' if shouldOptimizeConstants else 'false'}
|
142 |
const hofFile = "{equation_file}"
|
143 |
const nthreads = {threads:d}
|
|
|
144 |
const perturbationFactor = {perturbationFactor:f}f0
|
145 |
const annealing = {"true" if annealing else "false"}
|
146 |
const mutationWeights = [
|
|
|
5 |
import numpy as np
|
6 |
import pandas as pd
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
def pysr(X=None, y=None, threads=4,
|
9 |
niterations=100,
|
10 |
ncyclesperiteration=300,
|
11 |
binary_operators=["plus", "mult"],
|
12 |
unary_operators=["cos", "exp", "sin"],
|
13 |
+
alpha=0.1,
|
14 |
annealing=True,
|
15 |
+
fractionReplaced=0.10,
|
16 |
+
fractionReplacedHof=0.10,
|
17 |
+
npop=1000,
|
18 |
+
parsimony=1e-4,
|
19 |
migration=True,
|
20 |
hofMigration=True,
|
21 |
shouldOptimizeConstants=True,
|
22 |
+
topn=10,
|
23 |
+
weightAddNode=1,
|
24 |
+
weightInsertNode=3,
|
25 |
+
weightDeleteNode=3,
|
26 |
+
weightDoNothing=1,
|
27 |
+
weightMutateConstant=10,
|
28 |
+
weightMutateOperator=1,
|
29 |
+
weightRandomize=1,
|
30 |
+
weightSimplify=0.01,
|
31 |
+
perturbationFactor=1.0,
|
32 |
+
nrestarts=3,
|
33 |
timeout=None,
|
34 |
equation_file='hall_of_fame.csv',
|
35 |
test='simple1',
|
|
|
67 |
:param shouldOptimizeConstants: bool, Whether to numerically optimize
|
68 |
constants (Nelder-Mead/Newton) at the end of each iteration.
|
69 |
:param topn: int, How many top individuals migrate from each population.
|
70 |
+
:param nrestarts: int, Number of times to restart the constant optimizer
|
71 |
:param weightAddNode: float, Relative likelihood for mutation to add a node
|
72 |
:param weightInsertNode: float, Relative likelihood for mutation to insert a node
|
73 |
:param weightDeleteNode: float, Relative likelihood for mutation to delete a node
|
|
|
125 |
const shouldOptimizeConstants = {'true' if shouldOptimizeConstants else 'false'}
|
126 |
const hofFile = "{equation_file}"
|
127 |
const nthreads = {threads:d}
|
128 |
+
const nrestarts = {nrestarts:d}
|
129 |
const perturbationFactor = {perturbationFactor:f}f0
|
130 |
const annealing = {"true" if annealing else "false"}
|
131 |
const mutationWeights = [
|