MilesCranmer commited on
Commit
7b7f087
·
1 Parent(s): dadf84b

Adjust hyperparameters based on 1000 trial search

Browse files
Files changed (1) hide show
  1. eureqa.py +49 -22
eureqa.py CHANGED
@@ -5,24 +5,51 @@ import pathlib
5
  import numpy as np
6
  import pandas as pd
7
 
8
- def eureqa(X=None, y=None, threads=4, parsimony=1e-3, alpha=2.4,
9
- maxsize=20, migration=True,
10
- hofMigration=True, fractionReplacedHof=0.15,
11
- shouldOptimizeConstants=True,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  binary_operators=["plus", "mult"],
13
  unary_operators=["cos", "exp", "sin"],
14
- niterations=20, npop=120, annealing=True,
15
- ncyclesperiteration=12000, fractionReplaced=0.1,
16
- topn=2, equation_file='hall_of_fame.csv',
17
- test='simple1',
18
- weightMutateConstant=8.0,
19
- weightMutateOperator=0.7,
20
- weightAddNode=1.2,
21
- weightDeleteNode=0.17,
22
- weightSimplify=0.07,
23
- weightRandomize=0.18,
24
- weightDoNothing=1.7,
 
 
 
 
 
 
25
  timeout=None,
 
 
 
26
  ):
27
  """ Runs symbolic regression in Julia, to fit y given X.
28
  Either provide a 2D numpy array for X, 1D array for y, or declare a test to run.
@@ -163,15 +190,15 @@ if __name__ == "__main__":
163
  parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
164
 
165
  parser.add_argument("--threads", type=int, default=4, help="Number of threads")
166
- parser.add_argument("--parsimony", type=float, default=0.001, help="How much to punish complexity")
167
- parser.add_argument("--alpha", type=int, default=2.4, help="Scaling of temperature")
168
  parser.add_argument("--maxsize", type=int, default=20, help="Max size of equation")
169
  parser.add_argument("--niterations", type=int, default=20, help="Number of total migration periods")
170
- parser.add_argument("--npop", type=int, default=120, help="Number of members per population")
171
- parser.add_argument("--ncyclesperiteration", type=int, default=12000, help="Number of evolutionary cycles per migration")
172
- parser.add_argument("--topn", type=int, default=2, help="How many best species to distribute from each population")
173
- parser.add_argument("--fractionReplacedHof", type=float, default=0.15, help="Fraction of population to replace with hall of fame")
174
- parser.add_argument("--fractionReplaced", type=float, default=0.1, help="Fraction of population to replace with best from other populations")
175
  parser.add_argument("--migration", type=bool, default=True, help="Whether to migrate")
176
  parser.add_argument("--hofMigration", type=bool, default=True, help="Whether to have hall of fame migration")
177
  parser.add_argument("--shouldOptimizeConstants", type=bool, default=True, help="Whether to use classical optimization on constants before every migration (doesn't impact performance that much)")
 
5
  import numpy as np
6
  import pandas as pd
7
 
8
+ # Dumped from hyperparam optimization
9
+ default_alpha = 2.288229
10
+ default_annealing = 1.000000
11
+ default_fractionReplaced = 0.121271
12
+ default_fractionReplacedHof = 0.065129
13
+ default_ncyclesperiteration = 15831.000000
14
+ default_niterations = 11.000000
15
+ default_npop = 105.000000
16
+ default_parsimony = 0.000465
17
+ default_topn = 6.000000
18
+ default_weightAddNode = 0.454050
19
+ default_weightDeleteNode = 0.603670
20
+ default_weightDoNothing = 0.141223
21
+ default_weightMutateConstant = 3.680211
22
+ default_weightMutateOperator = 0.660488
23
+ default_weightRandomize = 6.759691
24
+ default_weightSimplify = 0.010442
25
+ default_result = 0.687007
26
+
27
+ def eureqa(X=None, y=None, threads=4,
28
+ niterations=20,
29
+ ncyclesperiteration=int(default_ncyclesperiteration),
30
  binary_operators=["plus", "mult"],
31
  unary_operators=["cos", "exp", "sin"],
32
+ alpha=default_alpha,
33
+ annealing=True,
34
+ fractionReplaced=default_fractionReplaced,
35
+ fractionReplacedHof=default_fractionReplacedHof,
36
+ npop=int(default_npop),
37
+ parsimony=default_parsimony,
38
+ migration=True,
39
+ hofMigration=True,
40
+ shouldOptimizeConstants=True,
41
+ topn=int(default_topn),
42
+ weightAddNode=default_weightAddNode,
43
+ weightDeleteNode=default_weightDeleteNode,
44
+ weightDoNothing=default_weightDoNothing,
45
+ weightMutateConstant=default_weightMutateConstant,
46
+ weightMutateOperator=default_weightMutateOperator,
47
+ weightRandomize=default_weightRandomize,
48
+ weightSimplify=default_weightSimplify,
49
  timeout=None,
50
+ equation_file='hall_of_fame.csv',
51
+ test='simple1',
52
+ maxsize=20,
53
  ):
54
  """ Runs symbolic regression in Julia, to fit y given X.
55
  Either provide a 2D numpy array for X, 1D array for y, or declare a test to run.
 
190
  parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
191
 
192
  parser.add_argument("--threads", type=int, default=4, help="Number of threads")
193
+ parser.add_argument("--parsimony", type=float, default=default_parsimony, help="How much to punish complexity")
194
+ parser.add_argument("--alpha", type=float, default=default_alpha, help="Scaling of temperature")
195
  parser.add_argument("--maxsize", type=int, default=20, help="Max size of equation")
196
  parser.add_argument("--niterations", type=int, default=20, help="Number of total migration periods")
197
+ parser.add_argument("--npop", type=int, default=int(default_npop), help="Number of members per population")
198
+ parser.add_argument("--ncyclesperiteration", type=int, default=int(default_ncyclesperiteration), help="Number of evolutionary cycles per migration")
199
+ parser.add_argument("--topn", type=int, default=int(default_topn), help="How many best species to distribute from each population")
200
+ parser.add_argument("--fractionReplacedHof", type=float, default=default_fractionReplacedHof, help="Fraction of population to replace with hall of fame")
201
+ parser.add_argument("--fractionReplaced", type=float, default=default_fractionReplaced, help="Fraction of population to replace with best from other populations")
202
  parser.add_argument("--migration", type=bool, default=True, help="Whether to migrate")
203
  parser.add_argument("--hofMigration", type=bool, default=True, help="Whether to have hall of fame migration")
204
  parser.add_argument("--shouldOptimizeConstants", type=bool, default=True, help="Whether to use classical optimization on constants before every migration (doesn't impact performance that much)")