MilesCranmer commited on
Commit
874bbe6
·
1 Parent(s): 891ed86

Fix docs style issues

Browse files
Files changed (1) hide show
  1. pysr/sr.py +27 -19
pysr/sr.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import copy
2
  import os
3
  import sys
@@ -879,7 +880,7 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
879
 
880
  def __repr__(self):
881
  """
882
- Prints all current equations fitted by the model.
883
 
884
  The string `>>>>` denotes which equation is selected by the
885
  `model_selection`.
@@ -926,7 +927,7 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
926
 
927
  def __getstate__(self):
928
  """
929
- Handles pickle serialization for PySRRegressor.
930
 
931
  The Scikit-learn standard requires estimators to be serializable via
932
  `pickle.dumps()`. However, `PyCall.jlwrap` does not support pickle
@@ -988,9 +989,10 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
988
  return pickled_state
989
 
990
  def _checkpoint(self):
991
- """Saves the model's current state to a checkpoint file.
992
 
993
- This should only be used internally by PySRRegressor."""
 
994
  # Save model state:
995
  self.show_pickle_warnings_ = False
996
  with open(_csv_filename_to_pkl_filename(self.equation_file_), "wb") as f:
@@ -1051,7 +1053,9 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
1051
 
1052
  def _setup_equation_file(self):
1053
  """
1054
- Sets the full pathname of the equation file, using :param`tempdir` and
 
 
1055
  :param`equation_file`.
1056
  """
1057
  # Cast tempdir string as a Path object
@@ -1072,7 +1076,7 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
1072
 
1073
  def _validate_and_set_init_params(self):
1074
  """
1075
- Ensures parameters passed at initialization are valid.
1076
 
1077
  Also returns a dictionary of parameters to update from their
1078
  values given at initialization.
@@ -1171,7 +1175,7 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
1171
 
1172
  def _validate_and_set_fit_params(self, X, y, Xresampled, weights, variable_names):
1173
  """
1174
- Validates the parameters passed to the :term`fit` method.
1175
 
1176
  This method also sets the `nout_` attribute.
1177
 
@@ -1257,7 +1261,7 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
1257
  self, X, y, Xresampled, variable_names, random_state
1258
  ):
1259
  """
1260
- Transforms the training data before fitting the symbolic regressor.
1261
 
1262
  This method also updates/sets the `selection_mask_` attribute.
1263
 
@@ -1712,8 +1716,10 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
1712
 
1713
  def refresh(self, checkpoint_file=None):
1714
  """
1715
- Updates self.equations_ with any new options passed, such as
1716
- :param`extra_sympy_mappings`.
 
 
1717
 
1718
  Parameters
1719
  ----------
@@ -1916,7 +1922,7 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
1916
  return best_equation["torch_format"]
1917
 
1918
  def _read_equation_file(self):
1919
- """Read the hall of fame file created by SymbolicRegression.jl"""
1920
  try:
1921
  if self.nout_ > 1:
1922
  all_outputs = []
@@ -1957,8 +1963,11 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
1957
  return all_outputs
1958
 
1959
  def get_hof(self):
1960
- """Get the equations from a hall of fame file. If no arguments
1961
- entered, the ones used previously from a call to PySR will be used."""
 
 
 
1962
  check_is_fitted(
1963
  self,
1964
  attributes=[
@@ -2159,10 +2168,7 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
2159
 
2160
 
2161
  def idx_model_selection(equations: pd.DataFrame, model_selection: str) -> int:
2162
- """
2163
- Return the index of the selected expression, given a dataframe of
2164
- equations and a model selection.
2165
- """
2166
  if model_selection == "accuracy":
2167
  chosen_idx = equations["loss"].idxmin()
2168
  elif model_selection == "best":
@@ -2179,7 +2185,7 @@ def idx_model_selection(equations: pd.DataFrame, model_selection: str) -> int:
2179
 
2180
 
2181
  def _denoise(X, y, Xresampled=None, random_state=None):
2182
- """Denoise the dataset using a Gaussian process"""
2183
  from sklearn.gaussian_process import GaussianProcessRegressor
2184
  from sklearn.gaussian_process.kernels import RBF, WhiteKernel, ConstantKernel
2185
 
@@ -2208,7 +2214,9 @@ def _handle_feature_selection(X, select_k_features, y, variable_names):
2208
 
2209
  def run_feature_selection(X, y, select_k_features, random_state=None):
2210
  """
2211
- Use a gradient boosting tree regressor as a proxy for finding
 
 
2212
  the k most important features in X, returning indices for those
2213
  features as output.
2214
  """
 
1
+ """Defines the PySRRegressor scikit-learn interface."""
2
  import copy
3
  import os
4
  import sys
 
880
 
881
  def __repr__(self):
882
  """
883
+ Print all current equations fitted by the model.
884
 
885
  The string `>>>>` denotes which equation is selected by the
886
  `model_selection`.
 
927
 
928
  def __getstate__(self):
929
  """
930
+ Handle pickle serialization for PySRRegressor.
931
 
932
  The Scikit-learn standard requires estimators to be serializable via
933
  `pickle.dumps()`. However, `PyCall.jlwrap` does not support pickle
 
989
  return pickled_state
990
 
991
  def _checkpoint(self):
992
+ """Save the model's current state to a checkpoint file.
993
 
994
+ This should only be used internally by PySRRegressor.
995
+ """
996
  # Save model state:
997
  self.show_pickle_warnings_ = False
998
  with open(_csv_filename_to_pkl_filename(self.equation_file_), "wb") as f:
 
1053
 
1054
  def _setup_equation_file(self):
1055
  """
1056
+ Set the full pathname of the equation file.
1057
+
1058
+ This is performed using :param`tempdir` and
1059
  :param`equation_file`.
1060
  """
1061
  # Cast tempdir string as a Path object
 
1076
 
1077
  def _validate_and_set_init_params(self):
1078
  """
1079
+ Ensure parameters passed at initialization are valid.
1080
 
1081
  Also returns a dictionary of parameters to update from their
1082
  values given at initialization.
 
1175
 
1176
  def _validate_and_set_fit_params(self, X, y, Xresampled, weights, variable_names):
1177
  """
1178
+ Validate the parameters passed to the :term`fit` method.
1179
 
1180
  This method also sets the `nout_` attribute.
1181
 
 
1261
  self, X, y, Xresampled, variable_names, random_state
1262
  ):
1263
  """
1264
+ Transform the training data before fitting the symbolic regressor.
1265
 
1266
  This method also updates/sets the `selection_mask_` attribute.
1267
 
 
1716
 
1717
  def refresh(self, checkpoint_file=None):
1718
  """
1719
+ Update self.equations_ with any new options passed.
1720
+
1721
+ For example, updating :param`extra_sympy_mappings`
1722
+ will require a `.refresh()` to update the equations.
1723
 
1724
  Parameters
1725
  ----------
 
1922
  return best_equation["torch_format"]
1923
 
1924
  def _read_equation_file(self):
1925
+ """Read the hall of fame file created by `SymbolicRegression.jl`."""
1926
  try:
1927
  if self.nout_ > 1:
1928
  all_outputs = []
 
1963
  return all_outputs
1964
 
1965
  def get_hof(self):
1966
+ """Get the equations from a hall of fame file.
1967
+
1968
+ If no arguments entered, the ones used
1969
+ previously from a call to PySR will be used.
1970
+ """
1971
  check_is_fitted(
1972
  self,
1973
  attributes=[
 
2168
 
2169
 
2170
  def idx_model_selection(equations: pd.DataFrame, model_selection: str) -> int:
2171
+ """Select an expression and return its index."""
 
 
 
2172
  if model_selection == "accuracy":
2173
  chosen_idx = equations["loss"].idxmin()
2174
  elif model_selection == "best":
 
2185
 
2186
 
2187
  def _denoise(X, y, Xresampled=None, random_state=None):
2188
+ """Denoise the dataset using a Gaussian process."""
2189
  from sklearn.gaussian_process import GaussianProcessRegressor
2190
  from sklearn.gaussian_process.kernels import RBF, WhiteKernel, ConstantKernel
2191
 
 
2214
 
2215
  def run_feature_selection(X, y, select_k_features, random_state=None):
2216
  """
2217
+ Find most important features.
2218
+
2219
+ Uses a gradient boosting tree regressor as a proxy for finding
2220
  the k most important features in X, returning indices for those
2221
  features as output.
2222
  """