Spaces:
Sleeping
Sleeping
MilesCranmer
commited on
Merge pull request #1 from MilesCranmer/insertionOp
Browse filesAdd insertion op; improve deletion op; add new way to simplify constants
- README.md +7 -5
- eureqa.jl +188 -28
- eureqa.py +29 -19
- hyperparamopt.py +1 -0
- operators.jl +2 -2
README.md
CHANGED
@@ -59,11 +59,11 @@ which gives:
|
|
59 |
### API
|
60 |
|
61 |
What follows is the API reference for running the numpy interface.
|
62 |
-
|
63 |
-
|
64 |
-
equations, so you likely don't need to tune them yourself.
|
65 |
However, you should adjust `threads`, `niterations`,
|
66 |
-
`binary_operators`, `unary_operators`, and `maxsize`
|
|
|
67 |
|
68 |
The program will output a pandas DataFrame containing the equations,
|
69 |
mean square error, and complexity. It will also dump to a csv
|
@@ -148,7 +148,7 @@ pd.DataFrame, Results dataframe, giving complexity, MSE, and equations
|
|
148 |
# TODO
|
149 |
|
150 |
- [ ] Make scaling of changes to constant a hyperparameter
|
151 |
-
- [ ] Update hall of fame every iteration
|
152 |
- [ ] Calculate feature importances of future mutations, by looking at correlation between residual of model, and the features.
|
153 |
- Store feature importances of future, and periodically update it.
|
154 |
- [ ] Implement more parts of the original Eureqa algorithms: https://www.creativemachineslab.com/eureqa.html
|
@@ -162,6 +162,8 @@ pd.DataFrame, Results dataframe, giving complexity, MSE, and equations
|
|
162 |
- Current most expensive operations:
|
163 |
- [ ] Calculating the loss function - there is duplicate calculations happening.
|
164 |
- [x] Declaration of the weights array every iteration
|
|
|
|
|
165 |
- [x] Record very best individual in each population, and return at end.
|
166 |
- [x] Write our own tree copy operation; deepcopy() is the slowest operation by far.
|
167 |
- [x] Hyperparameter tune
|
|
|
59 |
### API
|
60 |
|
61 |
What follows is the API reference for running the numpy interface.
|
62 |
+
You likely don't need to tune the hyperparameters yourself,
|
63 |
+
but if you would like, you can use `hyperopt.py` as an example.
|
|
|
64 |
However, you should adjust `threads`, `niterations`,
|
65 |
+
`binary_operators`, `unary_operators`, and `maxsize`
|
66 |
+
to your requirements.
|
67 |
|
68 |
The program will output a pandas DataFrame containing the equations,
|
69 |
mean square error, and complexity. It will also dump to a csv
|
|
|
148 |
# TODO
|
149 |
|
150 |
- [ ] Make scaling of changes to constant a hyperparameter
|
151 |
+
- [ ] Update hall of fame every iteration?
|
152 |
- [ ] Calculate feature importances of future mutations, by looking at correlation between residual of model, and the features.
|
153 |
- Store feature importances of future, and periodically update it.
|
154 |
- [ ] Implement more parts of the original Eureqa algorithms: https://www.creativemachineslab.com/eureqa.html
|
|
|
162 |
- Current most expensive operations:
|
163 |
- [ ] Calculating the loss function - there is duplicate calculations happening.
|
164 |
- [x] Declaration of the weights array every iteration
|
165 |
+
- [x] Add a node at the top of a tree
|
166 |
+
- [x] Insert a node at the top of a subtree
|
167 |
- [x] Record very best individual in each population, and return at end.
|
168 |
- [x] Write our own tree copy operation; deepcopy() is the slowest operation by far.
|
169 |
- [x] Hyperparameter tune
|
eureqa.jl
CHANGED
@@ -3,6 +3,22 @@ import Optim
|
|
3 |
const maxdegree = 2
|
4 |
const actualMaxsize = maxsize + maxdegree
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
id = (x,) -> x
|
7 |
const nuna = size(unaops)[1]
|
8 |
const nbin = size(binops)[1]
|
@@ -211,7 +227,6 @@ end
|
|
211 |
|
212 |
# Evaluate an equation over an array of datapoints
|
213 |
function evalTreeArray(tree::Node)::Array{Float32, 1}
|
214 |
-
len = size(X)[1]
|
215 |
if tree.degree == 0
|
216 |
if tree.constant
|
217 |
return ones(Float32, len) .* tree.val
|
@@ -225,21 +240,10 @@ function evalTreeArray(tree::Node)::Array{Float32, 1}
|
|
225 |
end
|
226 |
end
|
227 |
|
228 |
-
# Sum of square error between two arrays
|
229 |
-
function SSE(x::Array{Float32}, y::Array{Float32})::Float32
|
230 |
-
diff = (x - y)
|
231 |
-
return sum(diff .* diff)
|
232 |
-
end
|
233 |
-
|
234 |
-
# Mean of square error between two arrays
|
235 |
-
function MSE(x::Array{Float32}, y::Array{Float32})::Float32
|
236 |
-
return SSE(x, y)/size(x)[1]
|
237 |
-
end
|
238 |
-
|
239 |
# Score an equation
|
240 |
function scoreFunc(tree::Node)::Float32
|
241 |
try
|
242 |
-
return
|
243 |
catch error
|
244 |
if isa(error, DomainError)
|
245 |
return 1f9
|
@@ -290,17 +294,55 @@ function appendRandomOp(tree::Node)::Node
|
|
290 |
return tree
|
291 |
end
|
292 |
|
293 |
-
#
|
294 |
-
|
295 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
296 |
node = randomNode(tree)
|
297 |
-
|
298 |
-
|
299 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
else
|
301 |
-
|
|
|
|
|
|
|
302 |
end
|
303 |
-
newnode = Node(val)
|
304 |
node.l = newnode.l
|
305 |
node.r = newnode.r
|
306 |
node.op = newnode.op
|
@@ -310,6 +352,120 @@ function deleteRandomOp(tree::Node)::Node
|
|
310 |
return tree
|
311 |
end
|
312 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
|
314 |
# Simplify tree
|
315 |
function simplifyTree(tree::Node)::Node
|
@@ -355,12 +511,15 @@ function iterate(
|
|
355 |
tree = mutateOperator(tree)
|
356 |
elseif mutationChoice < cweights[3] && n < maxsize
|
357 |
tree = appendRandomOp(tree)
|
358 |
-
elseif mutationChoice < cweights[4]
|
359 |
-
tree =
|
360 |
elseif mutationChoice < cweights[5]
|
|
|
|
|
361 |
tree = simplifyTree(tree) # Sometimes we simplify tree
|
|
|
362 |
return tree
|
363 |
-
elseif mutationChoice < cweights[
|
364 |
tree = genRandomTree(5) # Sometimes we simplify tree
|
365 |
else
|
366 |
return tree
|
@@ -608,14 +767,15 @@ function fullRun(niterations::Integer;
|
|
608 |
debug(verbosity, "-----------------------------------------")
|
609 |
debug(verbosity, "Complexity \t MSE \t Equation")
|
610 |
println(io,"Complexity|MSE|Equation")
|
611 |
-
for size=1:
|
612 |
if hallOfFame.exists[size]
|
613 |
member = hallOfFame.members[size]
|
614 |
-
|
|
|
615 |
betterThanAllSmaller = (numberSmallerAndBetter == 0)
|
616 |
if betterThanAllSmaller
|
617 |
-
debug(verbosity, "$size \t $(
|
618 |
-
println(io, "$size|$(
|
619 |
push!(dominating, member)
|
620 |
end
|
621 |
end
|
|
|
3 |
const maxdegree = 2
|
4 |
const actualMaxsize = maxsize + maxdegree
|
5 |
|
6 |
+
|
7 |
+
# Sum of square error between two arrays
|
8 |
+
function SSE(x::Array{Float32}, y::Array{Float32})::Float32
|
9 |
+
diff = (x - y)
|
10 |
+
return sum(diff .* diff)
|
11 |
+
end
|
12 |
+
|
13 |
+
# Mean of square error between two arrays
|
14 |
+
function MSE(x::Array{Float32}, y::Array{Float32})::Float32
|
15 |
+
return SSE(x, y)/size(x)[1]
|
16 |
+
end
|
17 |
+
|
18 |
+
const len = size(X)[1]
|
19 |
+
const avgy = sum(y)/len
|
20 |
+
const baselineSSE = SSE(y, convert(Array{Float32, 1}, ones(len) .* avgy))
|
21 |
+
|
22 |
id = (x,) -> x
|
23 |
const nuna = size(unaops)[1]
|
24 |
const nbin = size(binops)[1]
|
|
|
227 |
|
228 |
# Evaluate an equation over an array of datapoints
|
229 |
function evalTreeArray(tree::Node)::Array{Float32, 1}
|
|
|
230 |
if tree.degree == 0
|
231 |
if tree.constant
|
232 |
return ones(Float32, len) .* tree.val
|
|
|
240 |
end
|
241 |
end
|
242 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
# Score an equation
|
244 |
function scoreFunc(tree::Node)::Float32
|
245 |
try
|
246 |
+
return SSE(evalTreeArray(tree), y)/baselineSSE + countNodes(tree)*parsimony
|
247 |
catch error
|
248 |
if isa(error, DomainError)
|
249 |
return 1f9
|
|
|
294 |
return tree
|
295 |
end
|
296 |
|
297 |
+
# Add random node to the top of a tree
|
298 |
+
function popRandomOp(tree::Node)::Node
|
299 |
+
node = tree
|
300 |
+
choice = rand()
|
301 |
+
makeNewBinOp = choice < nbin/nops
|
302 |
+
left = tree
|
303 |
+
|
304 |
+
if makeNewBinOp
|
305 |
+
right = randomConstantNode()
|
306 |
+
newnode = Node(
|
307 |
+
binops[rand(1:length(binops))],
|
308 |
+
left,
|
309 |
+
right
|
310 |
+
)
|
311 |
+
else
|
312 |
+
newnode = Node(
|
313 |
+
unaops[rand(1:length(unaops))],
|
314 |
+
left
|
315 |
+
)
|
316 |
+
end
|
317 |
+
node.l = newnode.l
|
318 |
+
node.r = newnode.r
|
319 |
+
node.op = newnode.op
|
320 |
+
node.degree = newnode.degree
|
321 |
+
node.val = newnode.val
|
322 |
+
node.constant = newnode.constant
|
323 |
+
return node
|
324 |
+
end
|
325 |
+
|
326 |
+
# Insert random node
|
327 |
+
function insertRandomOp(tree::Node)::Node
|
328 |
node = randomNode(tree)
|
329 |
+
choice = rand()
|
330 |
+
makeNewBinOp = choice < nbin/nops
|
331 |
+
left = copyNode(node)
|
332 |
+
|
333 |
+
if makeNewBinOp
|
334 |
+
right = randomConstantNode()
|
335 |
+
newnode = Node(
|
336 |
+
binops[rand(1:length(binops))],
|
337 |
+
left,
|
338 |
+
right
|
339 |
+
)
|
340 |
else
|
341 |
+
newnode = Node(
|
342 |
+
unaops[rand(1:length(unaops))],
|
343 |
+
left
|
344 |
+
)
|
345 |
end
|
|
|
346 |
node.l = newnode.l
|
347 |
node.r = newnode.r
|
348 |
node.op = newnode.op
|
|
|
352 |
return tree
|
353 |
end
|
354 |
|
355 |
+
function randomConstantNode()::Node
|
356 |
+
if rand() > 0.5
|
357 |
+
val = Float32(randn())
|
358 |
+
else
|
359 |
+
val = rand(1:nvar)
|
360 |
+
end
|
361 |
+
newnode = Node(val)
|
362 |
+
return newnode
|
363 |
+
end
|
364 |
+
|
365 |
+
# Return a random node from the tree with parent
|
366 |
+
function randomNodeAndParent(tree::Node, parent::Union{Node, Nothing})::Tuple{Node, Union{Node, Nothing}}
|
367 |
+
if tree.degree == 0
|
368 |
+
return tree, parent
|
369 |
+
end
|
370 |
+
a = countNodes(tree)
|
371 |
+
b = 0
|
372 |
+
c = 0
|
373 |
+
if tree.degree >= 1
|
374 |
+
b = countNodes(tree.l)
|
375 |
+
end
|
376 |
+
if tree.degree == 2
|
377 |
+
c = countNodes(tree.r)
|
378 |
+
end
|
379 |
+
|
380 |
+
i = rand(1:1+b+c)
|
381 |
+
if i <= b
|
382 |
+
return randomNodeAndParent(tree.l, tree)
|
383 |
+
elseif i == b + 1
|
384 |
+
return tree, parent
|
385 |
+
end
|
386 |
+
|
387 |
+
return randomNodeAndParent(tree.r, tree)
|
388 |
+
end
|
389 |
+
|
390 |
+
# Select a random node, and replace it an the subtree
|
391 |
+
# with a variable or constant
|
392 |
+
function deleteRandomOp(tree::Node)::Node
|
393 |
+
node, parent = randomNodeAndParent(tree, nothing)
|
394 |
+
isroot = (parent == nothing)
|
395 |
+
|
396 |
+
if node.degree == 0
|
397 |
+
# Replace with new constant
|
398 |
+
newnode = randomConstantNode()
|
399 |
+
node.l = newnode.l
|
400 |
+
node.r = newnode.r
|
401 |
+
node.op = newnode.op
|
402 |
+
node.degree = newnode.degree
|
403 |
+
node.val = newnode.val
|
404 |
+
node.constant = newnode.constant
|
405 |
+
elseif node.degree == 1
|
406 |
+
# Join one of the children with the parent
|
407 |
+
if isroot
|
408 |
+
return node.l
|
409 |
+
elseif parent.l == node
|
410 |
+
parent.l = node.l
|
411 |
+
else
|
412 |
+
parent.r = node.l
|
413 |
+
end
|
414 |
+
else
|
415 |
+
# Join one of the children with the parent
|
416 |
+
if rand() < 0.5
|
417 |
+
if isroot
|
418 |
+
return node.l
|
419 |
+
elseif parent.l == node
|
420 |
+
parent.l = node.l
|
421 |
+
else
|
422 |
+
parent.r = node.l
|
423 |
+
end
|
424 |
+
else
|
425 |
+
if isroot
|
426 |
+
return node.r
|
427 |
+
elseif parent.l == node
|
428 |
+
parent.l = node.r
|
429 |
+
else
|
430 |
+
parent.r = node.r
|
431 |
+
end
|
432 |
+
end
|
433 |
+
end
|
434 |
+
return tree
|
435 |
+
end
|
436 |
+
|
437 |
+
# Simplify tree
|
438 |
+
function combineOperators(tree::Node)::Node
|
439 |
+
# (const (+*) const) already accounted for
|
440 |
+
# ((const + var) + const) => (const + var)
|
441 |
+
# ((const * var) * const) => (const * var)
|
442 |
+
# (anything commutative!)
|
443 |
+
if tree.degree == 2 && (tree.op == plus || tree.op == mult)
|
444 |
+
op = tree.op
|
445 |
+
if tree.l.constant || tree.r.constant
|
446 |
+
# Put the constant in r
|
447 |
+
if tree.l.constant
|
448 |
+
tmp = tree.r
|
449 |
+
tree.r = tree.l
|
450 |
+
tree.l = tmp
|
451 |
+
end
|
452 |
+
topconstant = tree.r.val
|
453 |
+
# Simplify down first
|
454 |
+
tree.l = combineOperators(tree.l)
|
455 |
+
below = tree.l
|
456 |
+
if below.degree == 2 && below.op == op
|
457 |
+
if below.l.constant
|
458 |
+
tree = below
|
459 |
+
tree.l.val = op(tree.l.val, topconstant)
|
460 |
+
elseif below.r.constant
|
461 |
+
tree = below
|
462 |
+
tree.r.val = op(tree.r.val, topconstant)
|
463 |
+
end
|
464 |
+
end
|
465 |
+
end
|
466 |
+
end
|
467 |
+
return tree
|
468 |
+
end
|
469 |
|
470 |
# Simplify tree
|
471 |
function simplifyTree(tree::Node)::Node
|
|
|
511 |
tree = mutateOperator(tree)
|
512 |
elseif mutationChoice < cweights[3] && n < maxsize
|
513 |
tree = appendRandomOp(tree)
|
514 |
+
elseif mutationChoice < cweights[4] && n < maxsize
|
515 |
+
tree = insertRandomOp(tree)
|
516 |
elseif mutationChoice < cweights[5]
|
517 |
+
tree = deleteRandomOp(tree)
|
518 |
+
elseif mutationChoice < cweights[6]
|
519 |
tree = simplifyTree(tree) # Sometimes we simplify tree
|
520 |
+
tree = combineOperators(tree) # See if repeated constants at outer levels
|
521 |
return tree
|
522 |
+
elseif mutationChoice < cweights[7]
|
523 |
tree = genRandomTree(5) # Sometimes we simplify tree
|
524 |
else
|
525 |
return tree
|
|
|
767 |
debug(verbosity, "-----------------------------------------")
|
768 |
debug(verbosity, "Complexity \t MSE \t Equation")
|
769 |
println(io,"Complexity|MSE|Equation")
|
770 |
+
for size=1:actualMaxsize
|
771 |
if hallOfFame.exists[size]
|
772 |
member = hallOfFame.members[size]
|
773 |
+
curMSE = MSE(evalTreeArray(member.tree), y)
|
774 |
+
numberSmallerAndBetter = sum([curMSE > MSE(evalTreeArray(hallOfFame.members[i].tree), y) for i=1:(size-1)])
|
775 |
betterThanAllSmaller = (numberSmallerAndBetter == 0)
|
776 |
if betterThanAllSmaller
|
777 |
+
debug(verbosity, "$size \t $(curMSE) \t $(stringTree(member.tree))")
|
778 |
+
println(io, "$size|$(curMSE)|$(stringTree(member.tree))")
|
779 |
push!(dominating, member)
|
780 |
end
|
781 |
end
|
eureqa.py
CHANGED
@@ -6,27 +6,26 @@ import numpy as np
|
|
6 |
import pandas as pd
|
7 |
|
8 |
# Dumped from hyperparam optimization
|
9 |
-
default_alpha =
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
default_weightDoNothing =
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
default_result = -1.183938
|
26 |
|
27 |
def eureqa(X=None, y=None, threads=4,
|
28 |
niterations=20,
|
29 |
-
ncyclesperiteration=
|
30 |
binary_operators=["plus", "mult"],
|
31 |
unary_operators=["cos", "exp", "sin"],
|
32 |
alpha=default_alpha,
|
@@ -40,6 +39,7 @@ def eureqa(X=None, y=None, threads=4,
|
|
40 |
shouldOptimizeConstants=True,
|
41 |
topn=int(default_topn),
|
42 |
weightAddNode=default_weightAddNode,
|
|
|
43 |
weightDeleteNode=default_weightDeleteNode,
|
44 |
weightDoNothing=default_weightDoNothing,
|
45 |
weightMutateConstant=default_weightMutateConstant,
|
@@ -84,6 +84,7 @@ def eureqa(X=None, y=None, threads=4,
|
|
84 |
constants (Nelder-Mead/Newton) at the end of each iteration.
|
85 |
:param topn: int, How many top individuals migrate from each population.
|
86 |
:param weightAddNode: float, Relative likelihood for mutation to add a node
|
|
|
87 |
:param weightDeleteNode: float, Relative likelihood for mutation to delete a node
|
88 |
:param weightDoNothing: float, Relative likelihood for mutation to leave the individual
|
89 |
:param weightMutateConstant: float, Relative likelihood for mutation to change
|
@@ -141,6 +142,7 @@ const mutationWeights = [
|
|
141 |
{weightMutateConstant:f},
|
142 |
{weightMutateOperator:f},
|
143 |
{weightAddNode:f},
|
|
|
144 |
{weightDeleteNode:f},
|
145 |
{weightSimplify:f},
|
146 |
{weightRandomize:f},
|
@@ -199,10 +201,18 @@ if __name__ == "__main__":
|
|
199 |
parser.add_argument("--maxsize", type=int, default=20, help="Max size of equation")
|
200 |
parser.add_argument("--niterations", type=int, default=20, help="Number of total migration periods")
|
201 |
parser.add_argument("--npop", type=int, default=int(default_npop), help="Number of members per population")
|
202 |
-
parser.add_argument("--ncyclesperiteration", type=int, default=
|
203 |
parser.add_argument("--topn", type=int, default=int(default_topn), help="How many best species to distribute from each population")
|
204 |
parser.add_argument("--fractionReplacedHof", type=float, default=default_fractionReplacedHof, help="Fraction of population to replace with hall of fame")
|
205 |
parser.add_argument("--fractionReplaced", type=float, default=default_fractionReplaced, help="Fraction of population to replace with best from other populations")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
parser.add_argument("--migration", type=bool, default=True, help="Whether to migrate")
|
207 |
parser.add_argument("--hofMigration", type=bool, default=True, help="Whether to have hall of fame migration")
|
208 |
parser.add_argument("--shouldOptimizeConstants", type=bool, default=True, help="Whether to use classical optimization on constants before every migration (doesn't impact performance that much)")
|
|
|
6 |
import pandas as pd
|
7 |
|
8 |
# Dumped from hyperparam optimization
|
9 |
+
default_alpha = 5
|
10 |
+
default_fractionReplaced = 0.30
|
11 |
+
default_fractionReplacedHof = 0.05
|
12 |
+
default_npop = 200
|
13 |
+
default_weightAddNode = 1
|
14 |
+
default_weightInsertNode = 1
|
15 |
+
default_weightDeleteNode = 1
|
16 |
+
default_weightMutateConstant = 10
|
17 |
+
default_weightMutateOperator = 1
|
18 |
+
default_weightRandomize = 1
|
19 |
+
default_weightSimplify = 0.1
|
20 |
+
default_weightDoNothing = 1
|
21 |
+
default_result = 1
|
22 |
+
default_topn = 10
|
23 |
+
default_parsimony = 0.0
|
24 |
+
|
|
|
25 |
|
26 |
def eureqa(X=None, y=None, threads=4,
|
27 |
niterations=20,
|
28 |
+
ncyclesperiteration=10000,
|
29 |
binary_operators=["plus", "mult"],
|
30 |
unary_operators=["cos", "exp", "sin"],
|
31 |
alpha=default_alpha,
|
|
|
39 |
shouldOptimizeConstants=True,
|
40 |
topn=int(default_topn),
|
41 |
weightAddNode=default_weightAddNode,
|
42 |
+
weightInsertNode=default_weightInsertNode,
|
43 |
weightDeleteNode=default_weightDeleteNode,
|
44 |
weightDoNothing=default_weightDoNothing,
|
45 |
weightMutateConstant=default_weightMutateConstant,
|
|
|
84 |
constants (Nelder-Mead/Newton) at the end of each iteration.
|
85 |
:param topn: int, How many top individuals migrate from each population.
|
86 |
:param weightAddNode: float, Relative likelihood for mutation to add a node
|
87 |
+
:param weightInsertNode: float, Relative likelihood for mutation to insert a node
|
88 |
:param weightDeleteNode: float, Relative likelihood for mutation to delete a node
|
89 |
:param weightDoNothing: float, Relative likelihood for mutation to leave the individual
|
90 |
:param weightMutateConstant: float, Relative likelihood for mutation to change
|
|
|
142 |
{weightMutateConstant:f},
|
143 |
{weightMutateOperator:f},
|
144 |
{weightAddNode:f},
|
145 |
+
{weightInsertNode:f},
|
146 |
{weightDeleteNode:f},
|
147 |
{weightSimplify:f},
|
148 |
{weightRandomize:f},
|
|
|
201 |
parser.add_argument("--maxsize", type=int, default=20, help="Max size of equation")
|
202 |
parser.add_argument("--niterations", type=int, default=20, help="Number of total migration periods")
|
203 |
parser.add_argument("--npop", type=int, default=int(default_npop), help="Number of members per population")
|
204 |
+
parser.add_argument("--ncyclesperiteration", type=int, default=10000, help="Number of evolutionary cycles per migration")
|
205 |
parser.add_argument("--topn", type=int, default=int(default_topn), help="How many best species to distribute from each population")
|
206 |
parser.add_argument("--fractionReplacedHof", type=float, default=default_fractionReplacedHof, help="Fraction of population to replace with hall of fame")
|
207 |
parser.add_argument("--fractionReplaced", type=float, default=default_fractionReplaced, help="Fraction of population to replace with best from other populations")
|
208 |
+
parser.add_argument("--weightAddNode", type=float, default=default_weightAddNode)
|
209 |
+
parser.add_argument("--weightInsertNode", type=float, default=default_weightInsertNode)
|
210 |
+
parser.add_argument("--weightDeleteNode", type=float, default=default_weightDeleteNode)
|
211 |
+
parser.add_argument("--weightMutateConstant", type=float, default=default_weightMutateConstant)
|
212 |
+
parser.add_argument("--weightMutateOperator", type=float, default=default_weightMutateOperator)
|
213 |
+
parser.add_argument("--weightRandomize", type=float, default=default_weightRandomize)
|
214 |
+
parser.add_argument("--weightSimplify", type=float, default=default_weightSimplify)
|
215 |
+
parser.add_argument("--weightDoNothing", type=float, default=default_weightDoNothing)
|
216 |
parser.add_argument("--migration", type=bool, default=True, help="Whether to migrate")
|
217 |
parser.add_argument("--hofMigration", type=bool, default=True, help="Whether to have hall of fame migration")
|
218 |
parser.add_argument("--shouldOptimizeConstants", type=bool, default=True, help="Whether to use classical optimization on constants before every migration (doesn't impact performance that much)")
|
hyperparamopt.py
CHANGED
@@ -117,6 +117,7 @@ space = {
|
|
117 |
'weightMutateConstant': hp.lognormal('weightMutateConstant', np.log(4.0), 1.0),
|
118 |
'weightMutateOperator': hp.lognormal('weightMutateOperator', np.log(0.5), 1.0),
|
119 |
'weightAddNode': hp.lognormal('weightAddNode', np.log(0.5), 1.0),
|
|
|
120 |
'weightDeleteNode': hp.lognormal('weightDeleteNode', np.log(0.5), 1.0),
|
121 |
'weightSimplify': hp.lognormal('weightSimplify', np.log(0.05), 1.0),
|
122 |
'weightRandomize': hp.lognormal('weightRandomize', np.log(0.25), 1.0),
|
|
|
117 |
'weightMutateConstant': hp.lognormal('weightMutateConstant', np.log(4.0), 1.0),
|
118 |
'weightMutateOperator': hp.lognormal('weightMutateOperator', np.log(0.5), 1.0),
|
119 |
'weightAddNode': hp.lognormal('weightAddNode', np.log(0.5), 1.0),
|
120 |
+
'weightInsertNode': hp.lognormal('weightInsertNode', np.log(0.5), 1.0),
|
121 |
'weightDeleteNode': hp.lognormal('weightDeleteNode', np.log(0.5), 1.0),
|
122 |
'weightSimplify': hp.lognormal('weightSimplify', np.log(0.05), 1.0),
|
123 |
'weightRandomize': hp.lognormal('weightRandomize', np.log(0.25), 1.0),
|
operators.jl
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
# Define allowed operators. Any julia operator can also be used.
|
2 |
-
plus(x::Float32, y::Float32)::Float32 = x+y
|
3 |
-
mult(x::Float32, y::Float32)::Float32 = x*y
|
4 |
pow(x::Float32, y::Float32)::Float32 = sign(x)*abs(x)^y
|
5 |
div(x::Float32, y::Float32)::Float32 = x/y
|
6 |
loga(x::Float32)::Float32 = log(abs(x) + 1)
|
|
|
1 |
# Define allowed operators. Any julia operator can also be used.
|
2 |
+
plus(x::Float32, y::Float32)::Float32 = x+y #Do not change the name of this operator.
|
3 |
+
mult(x::Float32, y::Float32)::Float32 = x*y #Do not change the name of this operator.
|
4 |
pow(x::Float32, y::Float32)::Float32 = sign(x)*abs(x)^y
|
5 |
div(x::Float32, y::Float32)::Float32 = x/y
|
6 |
loga(x::Float32)::Float32 = log(abs(x) + 1)
|