Spaces:
Sleeping
Sleeping
MilesCranmer
commited on
Commit
•
9bfcbfa
1
Parent(s):
84e4a47
Add tests for jax/torch format
Browse files- test/test_jax.py +23 -1
- test/test_torch.py +23 -1
test/test_jax.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import unittest
|
2 |
import numpy as np
|
3 |
-
from pysr import sympy2jax
|
|
|
4 |
from jax import numpy as jnp
|
5 |
from jax import random
|
6 |
from jax import grad
|
@@ -15,3 +16,24 @@ class TestJAX(unittest.TestCase):
|
|
15 |
true = 1.0 * jnp.cos(X[:, 0]) + X[:, 1]
|
16 |
f, params = sympy2jax(cosx, [x, y, z])
|
17 |
self.assertTrue(jnp.all(jnp.isclose(f(X, params), true)).item())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import unittest
|
2 |
import numpy as np
|
3 |
+
from pysr import sympy2jax, get_hof
|
4 |
+
import pandas as pd
|
5 |
from jax import numpy as jnp
|
6 |
from jax import random
|
7 |
from jax import grad
|
|
|
16 |
true = 1.0 * jnp.cos(X[:, 0]) + X[:, 1]
|
17 |
f, params = sympy2jax(cosx, [x, y, z])
|
18 |
self.assertTrue(jnp.all(jnp.isclose(f(X, params), true)).item())
|
19 |
+
def test_pipeline(self):
|
20 |
+
X = np.random.randn(100, 2)
|
21 |
+
equations = pd.DataFrame({
|
22 |
+
'Equation': ['1.0', 'cos(x0)', 'square(cos(x0))'],
|
23 |
+
'MSE': [1.0, 0.1, 1e-5],
|
24 |
+
'Complexity': [1, 2, 3]
|
25 |
+
})
|
26 |
+
|
27 |
+
equations['Complexity MSE Equation'.split(' ')].to_csv(
|
28 |
+
'equation_file.csv.bkup', sep='|')
|
29 |
+
|
30 |
+
equations = get_hof(
|
31 |
+
'equation_file.csv', n_features=2, variables_names='x0 x1'.split(' '),
|
32 |
+
extra_sympy_mappings={}, output_jax_format=True,
|
33 |
+
multioutput=False, nout=1)
|
34 |
+
|
35 |
+
jformat = equations.iloc[-1].jax_format
|
36 |
+
np.testing.assert_almost_equal(
|
37 |
+
np.array(jformat['callable'](jnp.array(X), jformat['parameters'])),
|
38 |
+
np.square(np.cos(X[:, 0]))
|
39 |
+
)
|
test/test_torch.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import unittest
|
2 |
import numpy as np
|
3 |
-
|
|
|
4 |
import torch
|
5 |
import sympy
|
6 |
|
@@ -14,3 +15,24 @@ class TestTorch(unittest.TestCase):
|
|
14 |
self.assertTrue(
|
15 |
np.all(np.isclose(torch_module(X).detach().numpy(), true.detach().numpy()))
|
16 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import unittest
|
2 |
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
from pysr import sympy2torch, get_hof
|
5 |
import torch
|
6 |
import sympy
|
7 |
|
|
|
15 |
self.assertTrue(
|
16 |
np.all(np.isclose(torch_module(X).detach().numpy(), true.detach().numpy()))
|
17 |
)
|
18 |
+
def test_pipeline(self):
|
19 |
+
X = np.random.randn(100, 2)
|
20 |
+
equations = pd.DataFrame({
|
21 |
+
'Equation': ['1.0', 'cos(x0)', 'square(cos(x0))'],
|
22 |
+
'MSE': [1.0, 0.1, 1e-5],
|
23 |
+
'Complexity': [1, 2, 3]
|
24 |
+
})
|
25 |
+
|
26 |
+
equations['Complexity MSE Equation'.split(' ')].to_csv(
|
27 |
+
'equation_file.csv.bkup', sep='|')
|
28 |
+
|
29 |
+
equations = get_hof(
|
30 |
+
'equation_file.csv', n_features=2, variables_names='x0 x1'.split(' '),
|
31 |
+
extra_sympy_mappings={}, output_torch_format=True,
|
32 |
+
multioutput=False, nout=1)
|
33 |
+
|
34 |
+
tformat = equations.iloc[-1].torch_format
|
35 |
+
np.testing.assert_almost_equal(
|
36 |
+
tformat(torch.tensor(X)).detach().numpy(),
|
37 |
+
np.square(np.cos(X[:, 0]))
|
38 |
+
)
|