AutonLabTruth commited on
Commit
a9184d1
·
1 Parent(s): 502bd82

Refactored till errors

Browse files
Files changed (4) hide show
  1. julia/constants.jl +9 -0
  2. julia/errors.jl +37 -0
  3. julia/sr.jl +3 -45
  4. main.py +5 -1
julia/constants.jl ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+
2
+ const maxdegree = 2
3
+ const actualMaxsize = maxsize + maxdegree
4
+ const len = size(X)[1]
5
+
6
+ const nuna = size(unaops)[1]
7
+ const nbin = size(binops)[1]
8
+ const nops = nuna + nbin
9
+ const nvar = size(X)[2];
julia/errors.jl ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Sum of square error between two arrays
2
+ function SSE(x::Array{Float32}, y::Array{Float32})::Float32
3
+ diff = (x - y)
4
+ return sum(diff .* diff)
5
+ end
6
+ function SSE(x::Nothing, y::Array{Float32})::Float32
7
+ return 1f9
8
+ end
9
+
10
+ # Sum of square error between two arrays, with weights
11
+ function SSE(x::Array{Float32}, y::Array{Float32}, w::Array{Float32})::Float32
12
+ diff = (x - y)
13
+ return sum(diff .* diff .* w)
14
+ end
15
+ function SSE(x::Nothing, y::Array{Float32}, w::Array{Float32})::Float32
16
+ return Nothing
17
+ end
18
+
19
+ # Mean of square error between two arrays
20
+ function MSE(x::Nothing, y::Array{Float32})::Float32
21
+ return 1f9
22
+ end
23
+
24
+ # Mean of square error between two arrays
25
+ function MSE(x::Array{Float32}, y::Array{Float32})::Float32
26
+ return SSE(x, y)/size(x)[1]
27
+ end
28
+
29
+ # Mean of square error between two arrays
30
+ function MSE(x::Nothing, y::Array{Float32}, w::Array{Float32})::Float32
31
+ return 1f9
32
+ end
33
+
34
+ # Mean of square error between two arrays
35
+ function MSE(x::Array{Float32}, y::Array{Float32}, w::Array{Float32})::Float32
36
+ return SSE(x, y, w)/sum(w)
37
+ end
julia/sr.jl CHANGED
@@ -2,49 +2,10 @@ import Optim
2
  import Printf: @printf
3
  import Random: shuffle!, randperm
4
 
5
- const maxdegree = 2
6
- const actualMaxsize = maxsize + maxdegree
7
 
 
8
 
9
- # Sum of square error between two arrays
10
- function SSE(x::Array{Float32}, y::Array{Float32})::Float32
11
- diff = (x - y)
12
- return sum(diff .* diff)
13
- end
14
- function SSE(x::Nothing, y::Array{Float32})::Float32
15
- return 1f9
16
- end
17
-
18
- # Sum of square error between two arrays, with weights
19
- function SSE(x::Array{Float32}, y::Array{Float32}, w::Array{Float32})::Float32
20
- diff = (x - y)
21
- return sum(diff .* diff .* w)
22
- end
23
- function SSE(x::Nothing, y::Array{Float32}, w::Array{Float32})::Float32
24
- return Nothing
25
- end
26
-
27
- # Mean of square error between two arrays
28
- function MSE(x::Nothing, y::Array{Float32})::Float32
29
- return 1f9
30
- end
31
-
32
- # Mean of square error between two arrays
33
- function MSE(x::Array{Float32}, y::Array{Float32})::Float32
34
- return SSE(x, y)/size(x)[1]
35
- end
36
-
37
- # Mean of square error between two arrays
38
- function MSE(x::Nothing, y::Array{Float32}, w::Array{Float32})::Float32
39
- return 1f9
40
- end
41
-
42
- # Mean of square error between two arrays
43
- function MSE(x::Array{Float32}, y::Array{Float32}, w::Array{Float32})::Float32
44
- return SSE(x, y, w)/sum(w)
45
- end
46
-
47
- const len = size(X)[1]
48
 
49
  if weighted
50
  const avgy = sum(y .* weights)/sum(weights)
@@ -59,10 +20,7 @@ function id(x::Float32)::Float32
59
  x
60
  end
61
 
62
- const nuna = size(unaops)[1]
63
- const nbin = size(binops)[1]
64
- const nops = nuna + nbin
65
- const nvar = size(X)[2];
66
 
67
  function debug(verbosity, string...)
68
  verbosity > 0 ? println(string...) : nothing
 
2
  import Printf: @printf
3
  import Random: shuffle!, randperm
4
 
 
 
5
 
6
+ include("constants.jl")
7
 
8
+ include("errors.jl")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
  if weighted
11
  const avgy = sum(y .* weights)/sum(weights)
 
20
  x
21
  end
22
 
23
+
 
 
 
24
 
25
  function debug(verbosity, string...)
26
  verbosity > 0 ? println(string...) : nothing
main.py CHANGED
@@ -1,15 +1,19 @@
1
  import numpy as np
2
  from pysr import pysr, best, get_hof
 
3
 
4
  # Dataset
5
  X = 2*np.random.randn(100, 5)
6
  y = 2*np.cos(X[:, 3]) + X[:, 0]**2 - 2
7
 
 
8
  # Learn equations
 
9
  equations = pysr(X, y, niterations=5,
10
  binary_operators=["plus", "mult"],
11
  unary_operators=["cos", "exp", "sin"])
12
 
13
  ... # (you can use ctl-c to exit early)
14
 
15
- print(best(equations))
 
 
1
  import numpy as np
2
  from pysr import pysr, best, get_hof
3
+ import time
4
 
5
  # Dataset
6
  X = 2*np.random.randn(100, 5)
7
  y = 2*np.cos(X[:, 3]) + X[:, 0]**2 - 2
8
 
9
+
10
  # Learn equations
11
+ start = time.time()
12
  equations = pysr(X, y, niterations=5,
13
  binary_operators=["plus", "mult"],
14
  unary_operators=["cos", "exp", "sin"])
15
 
16
  ... # (you can use ctl-c to exit early)
17
 
18
+ print(best(equations))
19
+ print(f"Took {time.time()-start} seconds")