Spaces:
Sleeping
Sleeping
Run pysr in secondary instance
Browse files- gui/app.py +5 -75
- gui/install_pysr.sh +12 -0
- gui/run_pysr_and_save.py +68 -0
gui/app.py
CHANGED
@@ -1,11 +1,7 @@
|
|
1 |
-
import io
|
2 |
import gradio as gr
|
3 |
-
import sys
|
4 |
import os
|
5 |
import tempfile
|
6 |
-
import numpy as np
|
7 |
import pandas as pd
|
8 |
-
import traceback as tb
|
9 |
|
10 |
empty_df = pd.DataFrame(
|
11 |
{
|
@@ -14,7 +10,6 @@ empty_df = pd.DataFrame(
|
|
14 |
"complexity": [],
|
15 |
}
|
16 |
)
|
17 |
-
Main = None
|
18 |
|
19 |
def greet(
|
20 |
file_obj: tempfile._TemporaryFileWrapper,
|
@@ -23,12 +18,6 @@ def greet(
|
|
23 |
binary_operators: list,
|
24 |
unary_operators: list,
|
25 |
):
|
26 |
-
global Main
|
27 |
-
if Main is not None:
|
28 |
-
return (
|
29 |
-
empty_df,
|
30 |
-
"Refresh the page to run with a different configuration."
|
31 |
-
)
|
32 |
if col_to_fit == "":
|
33 |
return (
|
34 |
empty_df,
|
@@ -44,71 +33,12 @@ def greet(
|
|
44 |
empty_df,
|
45 |
"Please upload a CSV file!",
|
46 |
)
|
47 |
-
niterations = int(niterations)
|
48 |
-
|
49 |
-
# Install Julia:
|
50 |
-
os.system(
|
51 |
-
"""if [ ! -d "/home/user/julia" ]; then
|
52 |
-
wget https://julialang-s3.julialang.org/bin/linux/x64/1.7/julia-1.7.3-linux-x86_64.tar.gz
|
53 |
-
tar zxvf julia-1.7.3-linux-x86_64.tar.gz
|
54 |
-
mkdir /home/user/julia
|
55 |
-
mv julia-1.7.3/* /home/user/julia/
|
56 |
-
fi""")
|
57 |
-
os.environ["PATH"] += ":/home/user/julia/bin/"
|
58 |
-
# Need to install PySR in separate python instance:
|
59 |
-
os.system(
|
60 |
-
"""if [ ! -d "/home/user/.julia/environments/pysr-0.9.3" ]; then
|
61 |
-
export PATH="$PATH:/home/user/julia/bin/"
|
62 |
-
python -c 'import pysr; pysr.install()'
|
63 |
-
fi"""
|
64 |
-
)
|
65 |
-
|
66 |
-
import pysr
|
67 |
-
try:
|
68 |
-
from julia.api import JuliaInfo
|
69 |
-
info = JuliaInfo.load(julia="/home/user/julia/bin/julia")
|
70 |
-
from julia import Main as _Main
|
71 |
-
pysr.sr.Main = _Main
|
72 |
-
except Exception as e:
|
73 |
-
error_message = tb.format_exc()
|
74 |
-
return (
|
75 |
-
empty_df,
|
76 |
-
error_message,
|
77 |
-
)
|
78 |
-
from pysr import PySRRegressor
|
79 |
-
|
80 |
-
df = pd.read_csv(file_obj.name)
|
81 |
-
y = np.array(df[col_to_fit])
|
82 |
-
X = df.drop([col_to_fit], axis=1)
|
83 |
-
|
84 |
-
model = PySRRegressor(
|
85 |
-
update=False,
|
86 |
-
temp_equation_file=True,
|
87 |
-
niterations=niterations,
|
88 |
-
binary_operators=binary_operators,
|
89 |
-
unary_operators=unary_operators,
|
90 |
-
)
|
91 |
-
try:
|
92 |
-
model.fit(X, y)
|
93 |
-
# Catch all error:
|
94 |
-
except Exception as e:
|
95 |
-
error_traceback = tb.format_exc()
|
96 |
-
if "CalledProcessError" in error_traceback:
|
97 |
-
return (
|
98 |
-
empty_df,
|
99 |
-
"Could not initialize Julia. Error message:\n"
|
100 |
-
+ error_traceback,
|
101 |
-
)
|
102 |
-
else:
|
103 |
-
return (
|
104 |
-
empty_df,
|
105 |
-
"Failed due to error:\n" + error_traceback,
|
106 |
-
)
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
df =
|
111 |
-
|
|
|
112 |
|
113 |
|
114 |
def main():
|
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import os
|
3 |
import tempfile
|
|
|
4 |
import pandas as pd
|
|
|
5 |
|
6 |
empty_df = pd.DataFrame(
|
7 |
{
|
|
|
10 |
"complexity": [],
|
11 |
}
|
12 |
)
|
|
|
13 |
|
14 |
def greet(
|
15 |
file_obj: tempfile._TemporaryFileWrapper,
|
|
|
18 |
binary_operators: list,
|
19 |
unary_operators: list,
|
20 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
if col_to_fit == "":
|
22 |
return (
|
23 |
empty_df,
|
|
|
33 |
empty_df,
|
34 |
"Please upload a CSV file!",
|
35 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
os.system("bash install_pysr.sh")
|
38 |
+
os.system(f"python run_pysr_and_save.py --niterations {niterations} --binary_operators '{binary_operators}' --unary_operators '{unary_operators}' --col_to_fit {col_to_fit} --filename {file_obj.name}")
|
39 |
+
df = pd.read_csv("pysr_output.csv")
|
40 |
+
error_log = open("error.log", "r").read()
|
41 |
+
return df, error_log
|
42 |
|
43 |
|
44 |
def main():
|
gui/install_pysr.sh
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
# Install Julia:
|
4 |
+
if [ ! -f "/home/user/.local/bin/julia" ]; then
|
5 |
+
bash -ci "$(curl -fsSL https://raw.githubusercontent.com/abelsiqueira/jill/main/jill.sh)"
|
6 |
+
fi
|
7 |
+
|
8 |
+
# Need to install PySR in separate python instance:
|
9 |
+
if [ ! -d "/home/user/.julia/environments/pysr-0.9.3" ]; then
|
10 |
+
export PATH="$PATH:/home/user/julia/bin/"
|
11 |
+
python -c 'import pysr; pysr.install()'
|
12 |
+
fi
|
gui/run_pysr_and_save.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
import traceback as tb
|
4 |
+
import numpy as np
|
5 |
+
from argparse import ArgumentParser
|
6 |
+
|
7 |
+
# Args:
|
8 |
+
# niterations
|
9 |
+
# binary_operators
|
10 |
+
# unary_operators
|
11 |
+
# col_to_fit
|
12 |
+
|
13 |
+
empty_df = pd.DataFrame(
|
14 |
+
{
|
15 |
+
"equation": [],
|
16 |
+
"loss": [],
|
17 |
+
"complexity": [],
|
18 |
+
}
|
19 |
+
)
|
20 |
+
|
21 |
+
if __name__ == "__main__":
|
22 |
+
parser = ArgumentParser()
|
23 |
+
parser.add_argument("niterations", type=int)
|
24 |
+
parser.add_argument("binary_operators", type=str)
|
25 |
+
parser.add_argument("unary_operators", type=str)
|
26 |
+
parser.add_argument("col_to_fit", type=str)
|
27 |
+
parser.add_argument("filename", type=str)
|
28 |
+
args = parser.parse_args()
|
29 |
+
niterations = args.niterations
|
30 |
+
binary_operators = eval(args.binary_operators)
|
31 |
+
unary_operators = eval(args.unary_operators)
|
32 |
+
col_to_fit = args.col_to_fit
|
33 |
+
filename = args.filename
|
34 |
+
|
35 |
+
os.environ["PATH"] += ":/home/user/.local/bin/"
|
36 |
+
|
37 |
+
try:
|
38 |
+
import pysr
|
39 |
+
from julia.api import JuliaInfo
|
40 |
+
info = JuliaInfo.load(julia="/home/user/.local/bin/julia")
|
41 |
+
from julia import Main as _Main
|
42 |
+
pysr.sr.Main = _Main
|
43 |
+
|
44 |
+
from pysr import PySRRegressor
|
45 |
+
|
46 |
+
df = pd.read_csv(filename)
|
47 |
+
y = np.array(df[col_to_fit])
|
48 |
+
X = df.drop([col_to_fit], axis=1)
|
49 |
+
|
50 |
+
model = PySRRegressor(
|
51 |
+
update=False,
|
52 |
+
niterations=niterations,
|
53 |
+
binary_operators=binary_operators,
|
54 |
+
unary_operators=unary_operators,
|
55 |
+
)
|
56 |
+
model.fit(X, y)
|
57 |
+
|
58 |
+
df = model.equations_[["equation", "loss", "complexity"]]
|
59 |
+
# Convert all columns to string type:
|
60 |
+
df = df.astype(str)
|
61 |
+
df.to_csv("pysr_output.csv", index=False)
|
62 |
+
except Exception as e:
|
63 |
+
error_message = tb.format_exc()
|
64 |
+
# Dump to file:
|
65 |
+
empty_df.to_csv("pysr_output.csv", index=False)
|
66 |
+
with open("error.log", "w") as f:
|
67 |
+
f.write(error_message)
|
68 |
+
|