Spaces:
Sleeping
Sleeping
MilesCranmer
commited on
Commit
•
b0e1209
1
Parent(s):
f544d25
Switch to using sympytorch
Browse files- pysr/export_torch.py +25 -129
- setup.py +14 -3
pysr/export_torch.py
CHANGED
@@ -14,151 +14,46 @@ def _reduce(fn):
|
|
14 |
|
15 |
torch_initialized = False
|
16 |
torch = None
|
17 |
-
|
18 |
-
|
19 |
-
SingleSymPyModule = None
|
20 |
|
21 |
def _initialize_torch():
|
22 |
global torch_initialized
|
23 |
global torch
|
24 |
-
global
|
25 |
-
global
|
26 |
-
global SingleSymPyModule
|
27 |
|
28 |
# Way to lazy load torch, only if this is called,
|
29 |
# but still allow this module to be loaded in __init__
|
30 |
if not torch_initialized:
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
_global_func_lookup = {
|
35 |
-
sympy.Mul: _reduce(torch.mul),
|
36 |
-
sympy.Add: _reduce(torch.add),
|
37 |
-
sympy.div: torch.div,
|
38 |
-
sympy.Abs: torch.abs,
|
39 |
-
sympy.sign: torch.sign,
|
40 |
-
# Note: May raise error for ints.
|
41 |
-
sympy.ceiling: torch.ceil,
|
42 |
-
sympy.floor: torch.floor,
|
43 |
-
sympy.log: torch.log,
|
44 |
-
sympy.exp: torch.exp,
|
45 |
-
sympy.sqrt: torch.sqrt,
|
46 |
-
sympy.cos: torch.cos,
|
47 |
-
sympy.acos: torch.acos,
|
48 |
-
sympy.sin: torch.sin,
|
49 |
-
sympy.asin: torch.asin,
|
50 |
-
sympy.tan: torch.tan,
|
51 |
-
sympy.atan: torch.atan,
|
52 |
-
sympy.atan2: torch.atan2,
|
53 |
-
# Note: May give NaN for complex results.
|
54 |
-
sympy.cosh: torch.cosh,
|
55 |
-
sympy.acosh: torch.acosh,
|
56 |
-
sympy.sinh: torch.sinh,
|
57 |
-
sympy.asinh: torch.asinh,
|
58 |
-
sympy.tanh: torch.tanh,
|
59 |
-
sympy.atanh: torch.atanh,
|
60 |
-
sympy.Pow: torch.pow,
|
61 |
-
sympy.re: torch.real,
|
62 |
-
sympy.im: torch.imag,
|
63 |
-
sympy.arg: torch.angle,
|
64 |
-
# Note: May raise error for ints and complexes
|
65 |
-
sympy.erf: torch.erf,
|
66 |
-
sympy.loggamma: torch.lgamma,
|
67 |
-
sympy.Eq: torch.eq,
|
68 |
-
sympy.Ne: torch.ne,
|
69 |
-
sympy.StrictGreaterThan: torch.gt,
|
70 |
-
sympy.StrictLessThan: torch.lt,
|
71 |
-
sympy.LessThan: torch.le,
|
72 |
-
sympy.GreaterThan: torch.ge,
|
73 |
-
sympy.And: torch.logical_and,
|
74 |
-
sympy.Or: torch.logical_or,
|
75 |
-
sympy.Not: torch.logical_not,
|
76 |
-
sympy.Max: torch.max,
|
77 |
-
sympy.Min: torch.min,
|
78 |
-
# Matrices
|
79 |
-
sympy.MatAdd: torch.add,
|
80 |
-
sympy.HadamardProduct: torch.mul,
|
81 |
-
sympy.Trace: torch.trace,
|
82 |
-
# Note: May raise error for integer matrices.
|
83 |
-
sympy.Determinant: torch.det,
|
84 |
-
}
|
85 |
|
86 |
-
class
|
87 |
"""SympyTorch code from https://github.com/patrick-kidger/sympytorch"""
|
88 |
-
def __init__(self, *,
|
89 |
-
super().__init__(**kwargs)
|
90 |
-
|
91 |
-
self._sympy_func = expr.func
|
92 |
-
|
93 |
-
if issubclass(expr.func, sympy.Float):
|
94 |
-
self._value = torch.nn.Parameter(torch.tensor(float(expr)))
|
95 |
-
self._torch_func = lambda: self._value
|
96 |
-
self._args = ()
|
97 |
-
elif issubclass(expr.func, sympy.UnevaluatedExpr):
|
98 |
-
if len(expr.args) != 1 or not issubclass(expr.args[0].func, sympy.Float):
|
99 |
-
raise ValueError("UnevaluatedExpr should only be used to wrap floats.")
|
100 |
-
self.register_buffer('_value', torch.tensor(float(expr.args[0])))
|
101 |
-
self._torch_func = lambda: self._value
|
102 |
-
self._args = ()
|
103 |
-
elif issubclass(expr.func, sympy.Integer):
|
104 |
-
# Can get here if expr is one of the Integer special cases,
|
105 |
-
# e.g. NegativeOne
|
106 |
-
self._value = int(expr)
|
107 |
-
self._torch_func = lambda: self._value
|
108 |
-
self._args = ()
|
109 |
-
elif issubclass(expr.func, sympy.Symbol):
|
110 |
-
self._name = expr.name
|
111 |
-
self._torch_func = lambda value: value
|
112 |
-
self._args = ((lambda memodict: memodict[expr.name]),)
|
113 |
-
else:
|
114 |
-
self._torch_func = _func_lookup[expr.func]
|
115 |
-
args = []
|
116 |
-
for arg in expr.args:
|
117 |
-
try:
|
118 |
-
arg_ = _memodict[arg]
|
119 |
-
except KeyError:
|
120 |
-
arg_ = type(self)(expr=arg, _memodict=_memodict, _func_lookup=_func_lookup, **kwargs)
|
121 |
-
_memodict[arg] = arg_
|
122 |
-
args.append(arg_)
|
123 |
-
self._args = torch.nn.ModuleList(args)
|
124 |
-
|
125 |
-
def forward(self, memodict):
|
126 |
-
args = []
|
127 |
-
for arg in self._args:
|
128 |
-
try:
|
129 |
-
arg_ = memodict[arg]
|
130 |
-
except KeyError:
|
131 |
-
arg_ = arg(memodict)
|
132 |
-
memodict[arg] = arg_
|
133 |
-
args.append(arg_)
|
134 |
-
return self._torch_func(*args)
|
135 |
-
|
136 |
-
|
137 |
-
class SingleSymPyModule(torch.nn.Module):
|
138 |
-
"""SympyTorch code from https://github.com/patrick-kidger/sympytorch"""
|
139 |
-
def __init__(self, expression, symbols_in,
|
140 |
selection=None, extra_funcs=None, **kwargs):
|
141 |
super().__init__(**kwargs)
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
_func_lookup = co.ChainMap(_global_func_lookup, extra_funcs)
|
146 |
-
|
147 |
-
_memodict = {}
|
148 |
-
self._node = _Node(expr=expression, _memodict=_memodict, _func_lookup=_func_lookup)
|
149 |
-
self._expression_string = str(expression)
|
150 |
self._selection = selection
|
151 |
-
self.
|
152 |
-
|
153 |
def __repr__(self):
|
154 |
return f"{type(self).__name__}(expression={self._expression_string})"
|
155 |
|
156 |
def forward(self, X):
|
157 |
if self._selection is not None:
|
158 |
X = X[:, self._selection]
|
159 |
-
symbols = {symbol: X[:, i]
|
160 |
-
for i, symbol in enumerate(self.
|
161 |
-
return self.
|
162 |
|
163 |
|
164 |
def sympy2torch(expression, symbols_in,
|
@@ -168,10 +63,11 @@ def sympy2torch(expression, symbols_in,
|
|
168 |
This function will assume the input to the module is a matrix X, where
|
169 |
each column corresponds to each symbol you pass in `symbols_in`.
|
170 |
"""
|
171 |
-
global
|
172 |
|
173 |
_initialize_torch()
|
174 |
|
175 |
-
return
|
176 |
-
|
177 |
-
|
|
|
|
14 |
|
15 |
torch_initialized = False
|
16 |
torch = None
|
17 |
+
sympytorch = None
|
18 |
+
PySRTorchModule = None
|
|
|
19 |
|
20 |
def _initialize_torch():
|
21 |
global torch_initialized
|
22 |
global torch
|
23 |
+
global sympytorch
|
24 |
+
global PySRTorchModule
|
|
|
25 |
|
26 |
# Way to lazy load torch, only if this is called,
|
27 |
# but still allow this module to be loaded in __init__
|
28 |
if not torch_initialized:
|
29 |
+
try:
|
30 |
+
import torch
|
31 |
+
import sympytorch
|
32 |
+
except ImportError:
|
33 |
+
raise ImportError("You need to pip install `torch` and `sympytorch` before exporting to pytorch.")
|
34 |
+
torch_initialized = True
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
class PySRTorchModule(torch.nn.Module):
|
38 |
"""SympyTorch code from https://github.com/patrick-kidger/sympytorch"""
|
39 |
+
def __init__(self, *, expression, symbols_in,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
selection=None, extra_funcs=None, **kwargs):
|
41 |
super().__init__(**kwargs)
|
42 |
+
self._module = sympytorch.SymPyModule(
|
43 |
+
expressions=[expression],
|
44 |
+
extra_funcs=extra_funcs)
|
|
|
|
|
|
|
|
|
|
|
45 |
self._selection = selection
|
46 |
+
self._symbols = symbols_in
|
47 |
+
|
48 |
def __repr__(self):
|
49 |
return f"{type(self).__name__}(expression={self._expression_string})"
|
50 |
|
51 |
def forward(self, X):
|
52 |
if self._selection is not None:
|
53 |
X = X[:, self._selection]
|
54 |
+
symbols = {str(symbol): X[:, i]
|
55 |
+
for i, symbol in enumerate(self._symbols)}
|
56 |
+
return self._module(**symbols)[..., 0]
|
57 |
|
58 |
|
59 |
def sympy2torch(expression, symbols_in,
|
|
|
63 |
This function will assume the input to the module is a matrix X, where
|
64 |
each column corresponds to each symbol you pass in `symbols_in`.
|
65 |
"""
|
66 |
+
global PySRTorchModule
|
67 |
|
68 |
_initialize_torch()
|
69 |
|
70 |
+
return PySRTorchModule(expression=expression,
|
71 |
+
symbols_in=symbols_in,
|
72 |
+
selection=selection,
|
73 |
+
extra_funcs=extra_torch_mappings)
|
setup.py
CHANGED
@@ -1,8 +1,19 @@
|
|
|
|
1 |
import setuptools
|
2 |
|
3 |
with open("README.md", "r") as fh:
|
4 |
long_description = fh.read()
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
setuptools.setup(
|
7 |
name="pysr", # Replace with your own username
|
8 |
version="0.6.0rc1",
|
@@ -12,11 +23,11 @@ setuptools.setup(
|
|
12 |
long_description=long_description,
|
13 |
long_description_content_type="text/markdown",
|
14 |
url="https://github.com/MilesCranmer/pysr",
|
15 |
-
install_requires=[
|
16 |
"numpy",
|
17 |
"pandas",
|
18 |
"sympy"
|
19 |
-
],
|
20 |
packages=setuptools.find_packages(),
|
21 |
package_data={
|
22 |
'pysr': ['../Project.toml', '../datasets/*']
|
@@ -26,5 +37,5 @@ setuptools.setup(
|
|
26 |
"Programming Language :: Python :: 3",
|
27 |
"Operating System :: OS Independent",
|
28 |
],
|
29 |
-
python_requires='>=3.
|
30 |
)
|
|
|
1 |
+
import importlib.util
|
2 |
import setuptools
|
3 |
|
4 |
with open("README.md", "r") as fh:
|
5 |
long_description = fh.read()
|
6 |
|
7 |
+
extra_installs = []
|
8 |
+
|
9 |
+
torch_installed = (importlib.util.find_spec('torch') is not None)
|
10 |
+
install_sympytorch = torch_installed
|
11 |
+
|
12 |
+
if install_sympytorch:
|
13 |
+
extra_installs.append('sympytorch')
|
14 |
+
|
15 |
+
print(extra_installs)
|
16 |
+
|
17 |
setuptools.setup(
|
18 |
name="pysr", # Replace with your own username
|
19 |
version="0.6.0rc1",
|
|
|
23 |
long_description=long_description,
|
24 |
long_description_content_type="text/markdown",
|
25 |
url="https://github.com/MilesCranmer/pysr",
|
26 |
+
install_requires=([
|
27 |
"numpy",
|
28 |
"pandas",
|
29 |
"sympy"
|
30 |
+
] + extra_installs),
|
31 |
packages=setuptools.find_packages(),
|
32 |
package_data={
|
33 |
'pysr': ['../Project.toml', '../datasets/*']
|
|
|
37 |
"Programming Language :: Python :: 3",
|
38 |
"Operating System :: OS Independent",
|
39 |
],
|
40 |
+
python_requires='>=3.7',
|
41 |
)
|