Spaces:
Running
Running
MilesCranmer
commited on
Commit
·
b364345
1
Parent(s):
9c27796
Fix other parallelization issue with switch to @spawnat over @pmap
Browse files- eureqa.jl +9 -3
- paralleleureqa.jl +86 -33
eureqa.jl
CHANGED
@@ -17,6 +17,8 @@ const parsimony = 0.01
|
|
17 |
# How much to scale temperature by (T between 0 and 1)
|
18 |
const alpha = 10.0
|
19 |
|
|
|
|
|
20 |
|
21 |
|
22 |
|
@@ -188,7 +190,8 @@ function mutateConstant(
|
|
188 |
node = randomNode(tree)
|
189 |
end
|
190 |
|
191 |
-
|
|
|
192 |
factor = maxChange^rand()
|
193 |
makeConstBigger = rand() > 0.5
|
194 |
|
@@ -310,12 +313,13 @@ function iterate(
|
|
310 |
weights = [8, 1, 1, 1]
|
311 |
weights /= sum(weights)
|
312 |
cweights = cumsum(weights)
|
|
|
313 |
|
314 |
if mutationChoice < cweights[1]
|
315 |
tree = mutateConstant(tree, T)
|
316 |
elseif mutationChoice < cweights[2]
|
317 |
tree = mutateOperator(tree)
|
318 |
-
elseif mutationChoice < cweights[3]
|
319 |
tree = appendRandomOp(tree)
|
320 |
elseif mutationChoice < cweights[4]
|
321 |
tree = deleteRandomOp(tree)
|
@@ -407,6 +411,7 @@ end
|
|
407 |
function regEvolCycle(pop::Population, T::Float64)::Population
|
408 |
for i=1:Int(pop.n/10)
|
409 |
baby = iterateSample(pop, T)
|
|
|
410 |
oldest = argmin([pop.members[member].birth for member=1:pop.n])
|
411 |
pop.members[oldest] = baby
|
412 |
end
|
@@ -427,8 +432,9 @@ function run(
|
|
427 |
if annealing
|
428 |
pop = regEvolCycle(pop, allT[iT])
|
429 |
else
|
430 |
-
pop = regEvolCycle(pop,
|
431 |
end
|
432 |
end
|
433 |
return pop
|
434 |
end
|
|
|
|
17 |
# How much to scale temperature by (T between 0 and 1)
|
18 |
const alpha = 10.0
|
19 |
|
20 |
+
const maxsize = 20
|
21 |
+
|
22 |
|
23 |
|
24 |
|
|
|
190 |
node = randomNode(tree)
|
191 |
end
|
192 |
|
193 |
+
bottom = 0.1
|
194 |
+
maxChange = T + 1.0 + bottom
|
195 |
factor = maxChange^rand()
|
196 |
makeConstBigger = rand() > 0.5
|
197 |
|
|
|
313 |
weights = [8, 1, 1, 1]
|
314 |
weights /= sum(weights)
|
315 |
cweights = cumsum(weights)
|
316 |
+
n = countNodes(tree)
|
317 |
|
318 |
if mutationChoice < cweights[1]
|
319 |
tree = mutateConstant(tree, T)
|
320 |
elseif mutationChoice < cweights[2]
|
321 |
tree = mutateOperator(tree)
|
322 |
+
elseif mutationChoice < cweights[3] && n < maxsize
|
323 |
tree = appendRandomOp(tree)
|
324 |
elseif mutationChoice < cweights[4]
|
325 |
tree = deleteRandomOp(tree)
|
|
|
411 |
function regEvolCycle(pop::Population, T::Float64)::Population
|
412 |
for i=1:Int(pop.n/10)
|
413 |
baby = iterateSample(pop, T)
|
414 |
+
#printTree(baby.tree)
|
415 |
oldest = argmin([pop.members[member].birth for member=1:pop.n])
|
416 |
pop.members[oldest] = baby
|
417 |
end
|
|
|
432 |
if annealing
|
433 |
pop = regEvolCycle(pop, allT[iT])
|
434 |
else
|
435 |
+
pop = regEvolCycle(pop, 1.0)
|
436 |
end
|
437 |
end
|
438 |
return pop
|
439 |
end
|
440 |
+
|
paralleleureqa.jl
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
using Distributed
|
2 |
-
|
3 |
-
|
4 |
|
5 |
@everywhere include("eureqa.jl")
|
6 |
|
7 |
println("Lets try to learn (x2^2 + cos(x3) + 5) using regularized evolution from scratch")
|
8 |
-
const npop = 100
|
9 |
-
const annealing = false
|
10 |
-
const niterations =
|
11 |
-
const ncyclesperiteration =
|
12 |
|
13 |
# Generate random initial populations
|
14 |
|
@@ -16,43 +16,96 @@ const ncyclesperiteration = 1000
|
|
16 |
@everywhere f = (pop,)->run(pop, ncyclesperiteration, annealing)
|
17 |
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
|
27 |
-
#
|
28 |
-
|
|
|
|
|
|
|
|
|
29 |
bestCurScoreIdx = argmin([bestPops.members[member].score for member=1:bestPops.n])
|
30 |
bestCurScore = bestPops.members[bestCurScoreIdx].score
|
31 |
-
|
32 |
-
bestScore = bestCurScore
|
33 |
-
println(bestScore, " is the score for ", stringTree(bestPops.members[bestCurScoreIdx].tree))
|
34 |
-
end
|
35 |
|
36 |
# Migration
|
37 |
for j=1:nthreads
|
38 |
-
|
|
|
|
|
|
|
39 |
end
|
40 |
-
return allPops, bestScore
|
41 |
end
|
42 |
|
43 |
|
44 |
-
function runExperiment()
|
45 |
-
# Do niterations cycles
|
46 |
-
allPops = [Population(npop, 3) for j=1:nthreads]
|
47 |
-
bestScore = Inf
|
48 |
-
#pool = CachingPool(workers())
|
49 |
-
pool = WorkerPool(workers())
|
50 |
-
for i=1:niterations
|
51 |
-
allPops, bestScore = update(allPops, bestScore, pool)
|
52 |
-
end
|
53 |
|
54 |
-
return bestScore
|
55 |
-
end
|
56 |
|
57 |
-
runExperiment()
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
using Distributed
|
2 |
+
addprocs(8)
|
3 |
+
@everywhere const nthreads = 8
|
4 |
|
5 |
@everywhere include("eureqa.jl")
|
6 |
|
7 |
println("Lets try to learn (x2^2 + cos(x3) + 5) using regularized evolution from scratch")
|
8 |
+
@everywhere const npop = 100
|
9 |
+
@everywhere const annealing = false
|
10 |
+
@everywhere const niterations = 30
|
11 |
+
@everywhere const ncyclesperiteration = 10000
|
12 |
|
13 |
# Generate random initial populations
|
14 |
|
|
|
16 |
@everywhere f = (pop,)->run(pop, ncyclesperiteration, annealing)
|
17 |
|
18 |
|
19 |
+
allPops = [Population(npop, 3) for j=1:nthreads]
|
20 |
+
bestScore = Inf
|
21 |
+
# Repeat this many evolutions; we collect and migrate the best
|
22 |
+
# each time.
|
23 |
+
for k=1:4
|
24 |
+
# Spawn independent evolutions
|
25 |
+
futures = [@spawnat :any f(allPops[i]) for i=1:nthreads]
|
26 |
|
27 |
+
# Gather them
|
28 |
+
for i=1:nthreads
|
29 |
+
allPops[i] = fetch(futures[i])
|
30 |
+
end
|
31 |
+
# Get best 10 models for each processes. Copy because we re-assign later.
|
32 |
+
bestPops = deepcopy(Population([member for pop in allPops for member in bestSubPop(pop).members]))
|
33 |
bestCurScoreIdx = argmin([bestPops.members[member].score for member=1:bestPops.n])
|
34 |
bestCurScore = bestPops.members[bestCurScoreIdx].score
|
35 |
+
println(bestCurScore, " is the score for ", stringTree(bestPops.members[bestCurScoreIdx].tree))
|
|
|
|
|
|
|
36 |
|
37 |
# Migration
|
38 |
for j=1:nthreads
|
39 |
+
for k in rand(1:npop, 50)
|
40 |
+
# Copy in case one gets copied twice
|
41 |
+
allPops[j].members[k] = deepcopy(bestPops.members[rand(1:size(bestPops.members)[1])])
|
42 |
+
end
|
43 |
end
|
|
|
44 |
end
|
45 |
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
|
|
|
|
48 |
|
|
|
49 |
|
50 |
+
# julia> @everywhere include_string(Main, $(read("count_heads.jl", String)), "count_heads.jl")
|
51 |
+
|
52 |
+
# julia> a = @spawnat :any count_heads(100000000)
|
53 |
+
# Future(2, 1, 6, nothing)
|
54 |
+
|
55 |
+
# julia> b = @spawnat :any count_heads(100000000)
|
56 |
+
# Future(3, 1, 7, nothing)
|
57 |
+
|
58 |
+
# julia> fetch(a)+fetch(b)
|
59 |
+
# 100001564
|
60 |
+
|
61 |
+
# allPops = [Population(npop, 3) for j=1:nthreads]
|
62 |
+
# bestScore = Inf
|
63 |
+
# for i=1:10
|
64 |
+
# tmpPops = fetch(pmap(f, allPops))
|
65 |
+
# allPops[1:nthreads] = tmpPops[1:nthreads]
|
66 |
+
# # Get best 11 models for each processes
|
67 |
+
# bestPops = Population([member for pop in allPops for member in bestSubPop(pop).members])
|
68 |
+
# bestCurScoreIdx = argmin([bestPops.members[member].score for member=1:bestPops.n])
|
69 |
+
# bestCurScore = bestPops.members[bestCurScoreIdx].score
|
70 |
+
# println(bestCurScore, " is the score for ", stringTree(bestPops.members[bestCurScoreIdx].tree))
|
71 |
+
# end
|
72 |
+
|
73 |
+
|
74 |
+
# function update(allPops::Array{Population, 1}, bestScore::Float64)
|
75 |
+
# # Map it over our workers
|
76 |
+
# #global allPops = deepcopy(pmap(f, deepcopy(allPops)))
|
77 |
+
# #curAllPops = deepcopy(pmap(f, allPops))
|
78 |
+
# curAllPops = pmap(f, allPops)
|
79 |
+
# for j=1:nthreads
|
80 |
+
# allPops[j] = curAllPops[j]
|
81 |
+
# end
|
82 |
+
|
83 |
+
# # Get best 10 models for each processes
|
84 |
+
# bestPops = Population([member for pop in allPops for member in bestSubPop(pop).members])
|
85 |
+
# bestCurScoreIdx = argmin([bestPops.members[member].score for member=1:bestPops.n])
|
86 |
+
# bestCurScore = bestPops.members[bestCurScoreIdx].score
|
87 |
+
# if bestCurScore < bestScore
|
88 |
+
# bestScore = bestCurScore
|
89 |
+
# println(bestScore, " is the score for ", stringTree(bestPops.members[bestCurScoreIdx].tree))
|
90 |
+
# end
|
91 |
+
|
92 |
+
# # Migration
|
93 |
+
# for j=1:nthreads
|
94 |
+
# allPops[j].members[1:50] = deepcopy(bestPops.members[rand(1:bestPops.n, 50)])
|
95 |
+
# end
|
96 |
+
# return allPops, bestScore
|
97 |
+
# end
|
98 |
+
|
99 |
+
|
100 |
+
# function runExperiment()
|
101 |
+
# # Do niterations cycles
|
102 |
+
# allPops = [Population(npop, 3) for j=1:nthreads]
|
103 |
+
# bestScore = Inf
|
104 |
+
# for i=1:niterations
|
105 |
+
# allPops, bestScore = update(allPops, bestScore)
|
106 |
+
# end
|
107 |
+
|
108 |
+
# return bestScore
|
109 |
+
# end
|
110 |
+
|
111 |
+
# runExperiment()
|