MilesCranmer commited on
Commit
b5f33d5
·
unverified ·
1 Parent(s): b2513ce

Temporarily hide conda-forge install

Browse files

- Until the conda install is stable again

Files changed (1) hide show
  1. README.md +18 -37
README.md CHANGED
@@ -4,18 +4,13 @@
4
 
5
  PySR searches for symbolic expressions which optimize a particular objective.
6
 
7
- https://github.com/MilesCranmer/PySR/assets/7593028/c8511a49-b408-488f-8f18-b1749078268f
8
-
9
 
10
  # PySR: High-Performance Symbolic Regression in Python and Julia
11
 
12
- | **Docs** | **Forums** | **Paper** | **colab demo** |
13
- |:---:|:---:|:---:|:---:|
14
- |[![Documentation](https://github.com/MilesCranmer/PySR/actions/workflows/docs.yml/badge.svg)](https://astroautomata.com/PySR/)|[![Discussions](https://img.shields.io/badge/discussions-github-informational)](https://github.com/MilesCranmer/PySR/discussions)|[![Paper](https://img.shields.io/badge/arXiv-2305.01582-b31b1b)](https://arxiv.org/abs/2305.01582)|[![Colab](https://img.shields.io/badge/colab-notebook-yellow)](https://colab.research.google.com/github/MilesCranmer/PySR/blob/master/examples/pysr_demo.ipynb)|
15
-
16
- | **pip** | **conda** | **Stats** |
17
- | :---: | :---: | :---: |
18
- |[![PyPI version](https://badge.fury.io/py/pysr.svg)](https://badge.fury.io/py/pysr)|[![Conda Version](https://img.shields.io/conda/vn/conda-forge/pysr.svg)](https://anaconda.org/conda-forge/pysr)|<div align="center">pip: [![Downloads](https://pepy.tech/badge/pysr)](https://badge.fury.io/py/pysr)<br>conda: [![Anaconda-Server Badge](https://anaconda.org/conda-forge/pysr/badges/downloads.svg)](https://anaconda.org/conda-forge/pysr)</div>|
19
 
20
  </div>
21
 
@@ -121,41 +116,24 @@ python interface.
121
 
122
  ## Installation
123
 
124
- | [pip](#pip) | [conda](#conda) | [docker](#docker-build) |
125
- |:---:|:---:|:---:|
126
- | Everywhere (recommended) | Linux and Intel-based macOS | Everywhere (if all else fails) |
127
-
128
- ---
129
 
130
  ### pip
131
 
132
  1. [Install Julia](https://julialang.org/downloads/)
133
  - Alternatively, my personal preference is to use [juliaup](https://github.com/JuliaLang/juliaup#installation), which performs this automatically.
134
  2. Then, run:
 
135
  ```bash
136
  pip3 install -U pysr
137
  ```
138
- 3. Finally, to install Julia dependencies:
139
- ```bash
140
- python3 -m pysr install
141
- ```
142
- > (Alternatively, from within Python, you can call `import pysr; pysr.install()`)
143
 
144
- ---
145
-
146
- ### conda
147
-
148
- The PySR build in conda includes all required dependencies, so you can install it by simply running:
149
 
150
  ```bash
151
- conda install -c conda-forge pysr
152
  ```
153
 
154
- from within your target conda environment.
155
-
156
- However, note that the conda install does not support precompilation of Julia libraries, so the
157
- start time may be slightly slower as the JIT-compilation will be running.
158
- (Once the compilation finishes, there will not be a performance difference though.)
159
 
160
  ---
161
 
@@ -163,10 +141,13 @@ start time may be slightly slower as the JIT-compilation will be running.
163
 
164
  1. Clone this repo.
165
  2. In the repo, run the build command with:
 
166
  ```bash
167
  docker build -t pysr .
168
  ```
 
169
  3. You can then start the container with an IPython execution with:
 
170
  ```bash
171
  docker run -it --rm pysr ipython
172
  ```
@@ -251,13 +232,13 @@ to print the learned equations:
251
 
252
  ```python
253
  PySRRegressor.equations_ = [
254
- pick score equation loss complexity
255
- 0 0.000000 4.4324794 42.354317 1
256
- 1 1.255691 (x0 * x0) 3.437307 3
257
- 2 0.011629 ((x0 * x0) + -0.28087974) 3.358285 5
258
- 3 0.897855 ((x0 * x0) + cos(x3)) 1.368308 6
259
- 4 0.857018 ((x0 * x0) + (cos(x3) * 2.4566472)) 0.246483 8
260
- 5 >>>> inf (((cos(x3) + -0.19699033) * 2.5382123) + (x0 *... 0.000000 10
261
  ]
262
  ```
263
 
 
4
 
5
  PySR searches for symbolic expressions which optimize a particular objective.
6
 
7
+ <https://github.com/MilesCranmer/PySR/assets/7593028/c8511a49-b408-488f-8f18-b1749078268f>
 
8
 
9
  # PySR: High-Performance Symbolic Regression in Python and Julia
10
 
11
+ | **Docs** | **pip** | **Forums** | **Paper** | **colab demo** |
12
+ |:---:|:---:|:---:|:---:|:---:|
13
+ |[![Documentation](https://github.com/MilesCranmer/PySR/actions/workflows/docs.yml/badge.svg)](https://astroautomata.com/PySR/)|[![PyPI version](https://badge.fury.io/py/pysr.svg)](https://badge.fury.io/py/pysr)|[![Discussions](https://img.shields.io/badge/discussions-github-informational)](https://github.com/MilesCranmer/PySR/discussions)|[![Paper](https://img.shields.io/badge/arXiv-2305.01582-b31b1b)](https://arxiv.org/abs/2305.01582)|[![Colab](https://img.shields.io/badge/colab-notebook-yellow)](https://colab.research.google.com/github/MilesCranmer/PySR/blob/master/examples/pysr_demo.ipynb)|
 
 
 
 
14
 
15
  </div>
16
 
 
116
 
117
  ## Installation
118
 
 
 
 
 
 
119
 
120
  ### pip
121
 
122
  1. [Install Julia](https://julialang.org/downloads/)
123
  - Alternatively, my personal preference is to use [juliaup](https://github.com/JuliaLang/juliaup#installation), which performs this automatically.
124
  2. Then, run:
125
+
126
  ```bash
127
  pip3 install -U pysr
128
  ```
 
 
 
 
 
129
 
130
+ 3. Finally, to install Julia dependencies:
 
 
 
 
131
 
132
  ```bash
133
+ python3 -m pysr install
134
  ```
135
 
136
+ > (Alternatively, from within Python, you can call `import pysr; pysr.install()`)
 
 
 
 
137
 
138
  ---
139
 
 
141
 
142
  1. Clone this repo.
143
  2. In the repo, run the build command with:
144
+
145
  ```bash
146
  docker build -t pysr .
147
  ```
148
+
149
  3. You can then start the container with an IPython execution with:
150
+
151
  ```bash
152
  docker run -it --rm pysr ipython
153
  ```
 
232
 
233
  ```python
234
  PySRRegressor.equations_ = [
235
+ pick score equation loss complexity
236
+ 0 0.000000 4.4324794 42.354317 1
237
+ 1 1.255691 (x0 * x0) 3.437307 3
238
+ 2 0.011629 ((x0 * x0) + -0.28087974) 3.358285 5
239
+ 3 0.897855 ((x0 * x0) + cos(x3)) 1.368308 6
240
+ 4 0.857018 ((x0 * x0) + (cos(x3) * 2.4566472)) 0.246483 8
241
+ 5 >>>> inf (((cos(x3) + -0.19699033) * 2.5382123) + (x0 *... 0.000000 10
242
  ]
243
  ```
244