Spaces:
Sleeping
Sleeping
MilesCranmer
commited on
Commit
•
b5f33d5
1
Parent(s):
b2513ce
Temporarily hide conda-forge install
Browse files- Until the conda install is stable again
README.md
CHANGED
@@ -4,18 +4,13 @@
|
|
4 |
|
5 |
PySR searches for symbolic expressions which optimize a particular objective.
|
6 |
|
7 |
-
https://github.com/MilesCranmer/PySR/assets/7593028/c8511a49-b408-488f-8f18-b1749078268f
|
8 |
-
|
9 |
|
10 |
# PySR: High-Performance Symbolic Regression in Python and Julia
|
11 |
|
12 |
-
| **Docs** | **Forums** | **Paper** | **colab demo** |
|
13 |
-
|
14 |
-
|[![Documentation](https://github.com/MilesCranmer/PySR/actions/workflows/docs.yml/badge.svg)](https://astroautomata.com/PySR/)|[![Discussions](https://img.shields.io/badge/discussions-github-informational)](https://github.com/MilesCranmer/PySR/discussions)|[![Paper](https://img.shields.io/badge/arXiv-2305.01582-b31b1b)](https://arxiv.org/abs/2305.01582)|[![Colab](https://img.shields.io/badge/colab-notebook-yellow)](https://colab.research.google.com/github/MilesCranmer/PySR/blob/master/examples/pysr_demo.ipynb)|
|
15 |
-
|
16 |
-
| **pip** | **conda** | **Stats** |
|
17 |
-
| :---: | :---: | :---: |
|
18 |
-
|[![PyPI version](https://badge.fury.io/py/pysr.svg)](https://badge.fury.io/py/pysr)|[![Conda Version](https://img.shields.io/conda/vn/conda-forge/pysr.svg)](https://anaconda.org/conda-forge/pysr)|<div align="center">pip: [![Downloads](https://pepy.tech/badge/pysr)](https://badge.fury.io/py/pysr)<br>conda: [![Anaconda-Server Badge](https://anaconda.org/conda-forge/pysr/badges/downloads.svg)](https://anaconda.org/conda-forge/pysr)</div>|
|
19 |
|
20 |
</div>
|
21 |
|
@@ -121,41 +116,24 @@ python interface.
|
|
121 |
|
122 |
## Installation
|
123 |
|
124 |
-
| [pip](#pip) | [conda](#conda) | [docker](#docker-build) |
|
125 |
-
|:---:|:---:|:---:|
|
126 |
-
| Everywhere (recommended) | Linux and Intel-based macOS | Everywhere (if all else fails) |
|
127 |
-
|
128 |
-
---
|
129 |
|
130 |
### pip
|
131 |
|
132 |
1. [Install Julia](https://julialang.org/downloads/)
|
133 |
- Alternatively, my personal preference is to use [juliaup](https://github.com/JuliaLang/juliaup#installation), which performs this automatically.
|
134 |
2. Then, run:
|
|
|
135 |
```bash
|
136 |
pip3 install -U pysr
|
137 |
```
|
138 |
-
3. Finally, to install Julia dependencies:
|
139 |
-
```bash
|
140 |
-
python3 -m pysr install
|
141 |
-
```
|
142 |
-
> (Alternatively, from within Python, you can call `import pysr; pysr.install()`)
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
### conda
|
147 |
-
|
148 |
-
The PySR build in conda includes all required dependencies, so you can install it by simply running:
|
149 |
|
150 |
```bash
|
151 |
-
|
152 |
```
|
153 |
|
154 |
-
from within
|
155 |
-
|
156 |
-
However, note that the conda install does not support precompilation of Julia libraries, so the
|
157 |
-
start time may be slightly slower as the JIT-compilation will be running.
|
158 |
-
(Once the compilation finishes, there will not be a performance difference though.)
|
159 |
|
160 |
---
|
161 |
|
@@ -163,10 +141,13 @@ start time may be slightly slower as the JIT-compilation will be running.
|
|
163 |
|
164 |
1. Clone this repo.
|
165 |
2. In the repo, run the build command with:
|
|
|
166 |
```bash
|
167 |
docker build -t pysr .
|
168 |
```
|
|
|
169 |
3. You can then start the container with an IPython execution with:
|
|
|
170 |
```bash
|
171 |
docker run -it --rm pysr ipython
|
172 |
```
|
@@ -251,13 +232,13 @@ to print the learned equations:
|
|
251 |
|
252 |
```python
|
253 |
PySRRegressor.equations_ = [
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
]
|
262 |
```
|
263 |
|
|
|
4 |
|
5 |
PySR searches for symbolic expressions which optimize a particular objective.
|
6 |
|
7 |
+
<https://github.com/MilesCranmer/PySR/assets/7593028/c8511a49-b408-488f-8f18-b1749078268f>
|
|
|
8 |
|
9 |
# PySR: High-Performance Symbolic Regression in Python and Julia
|
10 |
|
11 |
+
| **Docs** | **pip** | **Forums** | **Paper** | **colab demo** |
|
12 |
+
|:---:|:---:|:---:|:---:|:---:|
|
13 |
+
|[![Documentation](https://github.com/MilesCranmer/PySR/actions/workflows/docs.yml/badge.svg)](https://astroautomata.com/PySR/)|[![PyPI version](https://badge.fury.io/py/pysr.svg)](https://badge.fury.io/py/pysr)|[![Discussions](https://img.shields.io/badge/discussions-github-informational)](https://github.com/MilesCranmer/PySR/discussions)|[![Paper](https://img.shields.io/badge/arXiv-2305.01582-b31b1b)](https://arxiv.org/abs/2305.01582)|[![Colab](https://img.shields.io/badge/colab-notebook-yellow)](https://colab.research.google.com/github/MilesCranmer/PySR/blob/master/examples/pysr_demo.ipynb)|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
</div>
|
16 |
|
|
|
116 |
|
117 |
## Installation
|
118 |
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
### pip
|
121 |
|
122 |
1. [Install Julia](https://julialang.org/downloads/)
|
123 |
- Alternatively, my personal preference is to use [juliaup](https://github.com/JuliaLang/juliaup#installation), which performs this automatically.
|
124 |
2. Then, run:
|
125 |
+
|
126 |
```bash
|
127 |
pip3 install -U pysr
|
128 |
```
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
+
3. Finally, to install Julia dependencies:
|
|
|
|
|
|
|
|
|
131 |
|
132 |
```bash
|
133 |
+
python3 -m pysr install
|
134 |
```
|
135 |
|
136 |
+
> (Alternatively, from within Python, you can call `import pysr; pysr.install()`)
|
|
|
|
|
|
|
|
|
137 |
|
138 |
---
|
139 |
|
|
|
141 |
|
142 |
1. Clone this repo.
|
143 |
2. In the repo, run the build command with:
|
144 |
+
|
145 |
```bash
|
146 |
docker build -t pysr .
|
147 |
```
|
148 |
+
|
149 |
3. You can then start the container with an IPython execution with:
|
150 |
+
|
151 |
```bash
|
152 |
docker run -it --rm pysr ipython
|
153 |
```
|
|
|
232 |
|
233 |
```python
|
234 |
PySRRegressor.equations_ = [
|
235 |
+
pick score equation loss complexity
|
236 |
+
0 0.000000 4.4324794 42.354317 1
|
237 |
+
1 1.255691 (x0 * x0) 3.437307 3
|
238 |
+
2 0.011629 ((x0 * x0) + -0.28087974) 3.358285 5
|
239 |
+
3 0.897855 ((x0 * x0) + cos(x3)) 1.368308 6
|
240 |
+
4 0.857018 ((x0 * x0) + (cos(x3) * 2.4566472)) 0.246483 8
|
241 |
+
5 >>>> inf (((cos(x3) + -0.19699033) * 2.5382123) + (x0 *... 0.000000 10
|
242 |
]
|
243 |
```
|
244 |
|