MilesCranmer commited on
Commit
c41cf33
·
unverified ·
2 Parent(s): 8775039 593c674

Merge pull request #176 from MilesCranmer/normal-csv-format

Browse files
Files changed (5) hide show
  1. pysr/sr.py +5 -5
  2. pysr/version.py +2 -2
  3. test/test.py +5 -5
  4. test/test_jax.py +6 -6
  5. test/test_torch.py +9 -9
pysr/sr.py CHANGED
@@ -469,7 +469,7 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
469
  Whether to use a progress bar instead of printing to stdout.
470
 
471
  equation_file : str, default=None
472
- Where to save the files (.csv separated by |).
473
 
474
  temp_equation_file : bool, default=False
475
  Whether to put the hall of fame file in the temp directory.
@@ -1969,12 +1969,12 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
1969
  cur_filename = str(self.equation_file_) + f".out{i}" + ".bkup"
1970
  if not os.path.exists(cur_filename):
1971
  cur_filename = str(self.equation_file_) + f".out{i}"
1972
- df = pd.read_csv(cur_filename, sep="|")
1973
  # Rename Complexity column to complexity:
1974
  df.rename(
1975
  columns={
1976
  "Complexity": "complexity",
1977
- "MSE": "loss",
1978
  "Equation": "equation",
1979
  },
1980
  inplace=True,
@@ -1985,11 +1985,11 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
1985
  filename = str(self.equation_file_) + ".bkup"
1986
  if not os.path.exists(filename):
1987
  filename = str(self.equation_file_)
1988
- all_outputs = [pd.read_csv(filename, sep="|")]
1989
  all_outputs[-1].rename(
1990
  columns={
1991
  "Complexity": "complexity",
1992
- "MSE": "loss",
1993
  "Equation": "equation",
1994
  },
1995
  inplace=True,
 
469
  Whether to use a progress bar instead of printing to stdout.
470
 
471
  equation_file : str, default=None
472
+ Where to save the files (with `.csv` extension).
473
 
474
  temp_equation_file : bool, default=False
475
  Whether to put the hall of fame file in the temp directory.
 
1969
  cur_filename = str(self.equation_file_) + f".out{i}" + ".bkup"
1970
  if not os.path.exists(cur_filename):
1971
  cur_filename = str(self.equation_file_) + f".out{i}"
1972
+ df = pd.read_csv(cur_filename)
1973
  # Rename Complexity column to complexity:
1974
  df.rename(
1975
  columns={
1976
  "Complexity": "complexity",
1977
+ "Loss": "loss",
1978
  "Equation": "equation",
1979
  },
1980
  inplace=True,
 
1985
  filename = str(self.equation_file_) + ".bkup"
1986
  if not os.path.exists(filename):
1987
  filename = str(self.equation_file_)
1988
+ all_outputs = [pd.read_csv(filename)]
1989
  all_outputs[-1].rename(
1990
  columns={
1991
  "Complexity": "complexity",
1992
+ "Loss": "loss",
1993
  "Equation": "equation",
1994
  },
1995
  inplace=True,
pysr/version.py CHANGED
@@ -1,2 +1,2 @@
1
- __version__ = "0.9.5"
2
- __symbolic_regression_jl_version__ = "0.9.7"
 
1
+ __version__ = "0.10.0"
2
+ __symbolic_regression_jl_version__ = "0.10.0"
test/test.py CHANGED
@@ -288,10 +288,10 @@ class TestPipeline(unittest.TestCase):
288
  def test_load_model(self):
289
  """See if we can load a ran model from the equation file."""
290
  csv_file_data = """
291
- Complexity|MSE|Equation
292
- 1|0.19951081|1.9762075
293
- 3|0.12717344|(f0 + 1.4724599)
294
- 4|0.104823045|pow_abs(2.2683423, cos(f3))"""
295
  # Strip the indents:
296
  csv_file_data = "\n".join([l.strip() for l in csv_file_data.split("\n")])
297
 
@@ -379,7 +379,7 @@ class TestBest(unittest.TestCase):
379
  self.model.selection_mask_ = None
380
  self.model.feature_names_in_ = np.array(["x0", "x1"], dtype=object)
381
  equations["complexity loss equation".split(" ")].to_csv(
382
- "equation_file.csv.bkup", sep="|"
383
  )
384
 
385
  self.model.refresh()
 
288
  def test_load_model(self):
289
  """See if we can load a ran model from the equation file."""
290
  csv_file_data = """
291
+ Complexity,Loss,Equation
292
+ 1,0.19951081,"1.9762075"
293
+ 3,0.12717344,"(f0 + 1.4724599)"
294
+ 4,0.104823045,"pow_abs(2.2683423, cos(f3))\""""
295
  # Strip the indents:
296
  csv_file_data = "\n".join([l.strip() for l in csv_file_data.split("\n")])
297
 
 
379
  self.model.selection_mask_ = None
380
  self.model.feature_names_in_ = np.array(["x0", "x1"], dtype=object)
381
  equations["complexity loss equation".split(" ")].to_csv(
382
+ "equation_file.csv.bkup"
383
  )
384
 
385
  self.model.refresh()
test/test_jax.py CHANGED
@@ -34,13 +34,13 @@ class TestJAX(unittest.TestCase):
34
  equations = pd.DataFrame(
35
  {
36
  "Equation": ["1.0", "cos(x1)", "square(cos(x1))"],
37
- "MSE": [1.0, 0.1, 1e-5],
38
  "Complexity": [1, 2, 3],
39
  }
40
  )
41
 
42
- equations["Complexity MSE Equation".split(" ")].to_csv(
43
- "equation_file.csv.bkup", sep="|"
44
  )
45
 
46
  model.refresh(checkpoint_file="equation_file.csv")
@@ -61,13 +61,13 @@ class TestJAX(unittest.TestCase):
61
  equations = pd.DataFrame(
62
  {
63
  "Equation": ["1.0", "cos(x1)", "square(cos(x1))"],
64
- "MSE": [1.0, 0.1, 1e-5],
65
  "Complexity": [1, 2, 3],
66
  }
67
  )
68
 
69
- equations["Complexity MSE Equation".split(" ")].to_csv(
70
- "equation_file.csv.bkup", sep="|"
71
  )
72
 
73
  model.refresh(checkpoint_file="equation_file.csv")
 
34
  equations = pd.DataFrame(
35
  {
36
  "Equation": ["1.0", "cos(x1)", "square(cos(x1))"],
37
+ "Loss": [1.0, 0.1, 1e-5],
38
  "Complexity": [1, 2, 3],
39
  }
40
  )
41
 
42
+ equations["Complexity Loss Equation".split(" ")].to_csv(
43
+ "equation_file.csv.bkup"
44
  )
45
 
46
  model.refresh(checkpoint_file="equation_file.csv")
 
61
  equations = pd.DataFrame(
62
  {
63
  "Equation": ["1.0", "cos(x1)", "square(cos(x1))"],
64
+ "Loss": [1.0, 0.1, 1e-5],
65
  "Complexity": [1, 2, 3],
66
  }
67
  )
68
 
69
+ equations["Complexity Loss Equation".split(" ")].to_csv(
70
+ "equation_file.csv.bkup"
71
  )
72
 
73
  model.refresh(checkpoint_file="equation_file.csv")
test/test_torch.py CHANGED
@@ -49,13 +49,13 @@ class TestTorch(unittest.TestCase):
49
  equations = pd.DataFrame(
50
  {
51
  "Equation": ["1.0", "cos(x1)", "square(cos(x1))"],
52
- "MSE": [1.0, 0.1, 1e-5],
53
  "Complexity": [1, 2, 3],
54
  }
55
  )
56
 
57
- equations["Complexity MSE Equation".split(" ")].to_csv(
58
- "equation_file.csv.bkup", sep="|"
59
  )
60
 
61
  model.refresh(checkpoint_file="equation_file.csv")
@@ -82,13 +82,13 @@ class TestTorch(unittest.TestCase):
82
  equations = pd.DataFrame(
83
  {
84
  "Equation": ["1.0", "cos(x1)", "square(cos(x1))"],
85
- "MSE": [1.0, 0.1, 1e-5],
86
  "Complexity": [1, 2, 3],
87
  }
88
  )
89
 
90
- equations["Complexity MSE Equation".split(" ")].to_csv(
91
- "equation_file.csv.bkup", sep="|"
92
  )
93
 
94
  model.refresh(checkpoint_file="equation_file.csv")
@@ -133,13 +133,13 @@ class TestTorch(unittest.TestCase):
133
  equations = pd.DataFrame(
134
  {
135
  "Equation": ["1.0", "mycustomoperator(x1)"],
136
- "MSE": [1.0, 0.1],
137
  "Complexity": [1, 2],
138
  }
139
  )
140
 
141
- equations["Complexity MSE Equation".split(" ")].to_csv(
142
- "equation_file_custom_operator.csv.bkup", sep="|"
143
  )
144
 
145
  model.set_params(
 
49
  equations = pd.DataFrame(
50
  {
51
  "Equation": ["1.0", "cos(x1)", "square(cos(x1))"],
52
+ "Loss": [1.0, 0.1, 1e-5],
53
  "Complexity": [1, 2, 3],
54
  }
55
  )
56
 
57
+ equations["Complexity Loss Equation".split(" ")].to_csv(
58
+ "equation_file.csv.bkup"
59
  )
60
 
61
  model.refresh(checkpoint_file="equation_file.csv")
 
82
  equations = pd.DataFrame(
83
  {
84
  "Equation": ["1.0", "cos(x1)", "square(cos(x1))"],
85
+ "Loss": [1.0, 0.1, 1e-5],
86
  "Complexity": [1, 2, 3],
87
  }
88
  )
89
 
90
+ equations["Complexity Loss Equation".split(" ")].to_csv(
91
+ "equation_file.csv.bkup"
92
  )
93
 
94
  model.refresh(checkpoint_file="equation_file.csv")
 
133
  equations = pd.DataFrame(
134
  {
135
  "Equation": ["1.0", "mycustomoperator(x1)"],
136
+ "Loss": [1.0, 0.1],
137
  "Complexity": [1, 2],
138
  }
139
  )
140
 
141
+ equations["Complexity Loss Equation".split(" ")].to_csv(
142
+ "equation_file_custom_operator.csv.bkup"
143
  )
144
 
145
  model.set_params(