Spaces:
Sleeping
Sleeping
MilesCranmer
commited on
Commit
•
cdf9a75
1
Parent(s):
3307575
Make tests always choose most accurate equation
Browse files- This is because choosing "best" equation is sometimes problematic in
cases where there is a large score at an innaccurate equation. This
can happen randomly.
- test/test.py +2 -5
test/test.py
CHANGED
@@ -20,6 +20,7 @@ class TestPipeline(unittest.TestCase):
|
|
20 |
inspect.signature(PySRRegressor.__init__).parameters["populations"].default
|
21 |
)
|
22 |
self.default_test_kwargs = dict(
|
|
|
23 |
niterations=default_niterations * 2,
|
24 |
populations=default_populations * 2,
|
25 |
)
|
@@ -30,7 +31,6 @@ class TestPipeline(unittest.TestCase):
|
|
30 |
y = self.X[:, 0]
|
31 |
model = PySRRegressor(**self.default_test_kwargs)
|
32 |
model.fit(self.X, y)
|
33 |
-
model.set_params(model_selection="accuracy")
|
34 |
print(model.equations)
|
35 |
self.assertLessEqual(model.get_best()["loss"], 1e-4)
|
36 |
|
@@ -103,7 +103,6 @@ class TestPipeline(unittest.TestCase):
|
|
103 |
X = np.random.randn(100, 1)
|
104 |
y = X[:, 0] + 3.0
|
105 |
regressor = PySRRegressor(
|
106 |
-
model_selection="accuracy",
|
107 |
unary_operators=[],
|
108 |
binary_operators=["plus"],
|
109 |
**self.default_test_kwargs,
|
@@ -129,9 +128,6 @@ class TestPipeline(unittest.TestCase):
|
|
129 |
self.assertTrue("None" not in regressor.__repr__())
|
130 |
self.assertTrue(">>>>" in regressor.__repr__())
|
131 |
|
132 |
-
# "best" model_selection should also give a decent loss:
|
133 |
-
np.testing.assert_almost_equal(regressor.predict(X), y, decimal=1)
|
134 |
-
|
135 |
def test_noisy(self):
|
136 |
|
137 |
np.random.seed(1)
|
@@ -217,6 +213,7 @@ class TestBest(unittest.TestCase):
|
|
217 |
variable_names="x0 x1".split(" "),
|
218 |
extra_sympy_mappings={},
|
219 |
output_jax_format=False,
|
|
|
220 |
)
|
221 |
self.model.n_features = 2
|
222 |
self.model.refresh()
|
|
|
20 |
inspect.signature(PySRRegressor.__init__).parameters["populations"].default
|
21 |
)
|
22 |
self.default_test_kwargs = dict(
|
23 |
+
model_selection="accuracy",
|
24 |
niterations=default_niterations * 2,
|
25 |
populations=default_populations * 2,
|
26 |
)
|
|
|
31 |
y = self.X[:, 0]
|
32 |
model = PySRRegressor(**self.default_test_kwargs)
|
33 |
model.fit(self.X, y)
|
|
|
34 |
print(model.equations)
|
35 |
self.assertLessEqual(model.get_best()["loss"], 1e-4)
|
36 |
|
|
|
103 |
X = np.random.randn(100, 1)
|
104 |
y = X[:, 0] + 3.0
|
105 |
regressor = PySRRegressor(
|
|
|
106 |
unary_operators=[],
|
107 |
binary_operators=["plus"],
|
108 |
**self.default_test_kwargs,
|
|
|
128 |
self.assertTrue("None" not in regressor.__repr__())
|
129 |
self.assertTrue(">>>>" in regressor.__repr__())
|
130 |
|
|
|
|
|
|
|
131 |
def test_noisy(self):
|
132 |
|
133 |
np.random.seed(1)
|
|
|
213 |
variable_names="x0 x1".split(" "),
|
214 |
extra_sympy_mappings={},
|
215 |
output_jax_format=False,
|
216 |
+
model_selection="accuracy",
|
217 |
)
|
218 |
self.model.n_features = 2
|
219 |
self.model.refresh()
|