Spaces:
Sleeping
Sleeping
MilesCranmer
commited on
Commit
•
cfca8a4
1
Parent(s):
fa28749
Add a python interface
Browse files- .gitignore +2 -0
- README.md +11 -16
- dataset.jl +0 -7
- eureqa.jl +2 -2
- eureqa.py +84 -0
- hyperparams.jl +0 -33
- operators.jl +3 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
.dataset.jl
|
2 |
+
.hyperparams.jl
|
README.md
CHANGED
@@ -1,25 +1,20 @@
|
|
1 |
-
#
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
```bash
|
5 |
-
|
6 |
```
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
The first argument to `fullRun` is the number of migration periods to run,
|
12 |
-
with `ncyclesperiteration` determining how many generations
|
13 |
-
per migration period. `npop` is the number of population members.
|
14 |
-
`annealing` determines whether to stay in exploration mode,
|
15 |
-
or tune it down with each cycle. `fractionReplaced` is
|
16 |
-
how much of the population is replaced by migrated equations each
|
17 |
-
step. `topn` is the number of top members of each population
|
18 |
-
to migrate.
|
19 |
|
20 |
|
21 |
-
Run it with threading turned on using:
|
22 |
-
`julia --threads auto -O3 myfile.jl`
|
23 |
|
24 |
## Modification
|
25 |
|
|
|
1 |
+
# Eureqa.jl
|
2 |
|
3 |
+
Symbolic regression built on Eureqa, and interfaced by Python.
|
4 |
+
Uses regularized evolution and simulated annealing.
|
5 |
+
|
6 |
+
## Running:
|
7 |
+
|
8 |
+
You can execute the program from the command line with, for example:
|
9 |
```bash
|
10 |
+
python eureqa.py --threads 8 --binary-operators plus mult
|
11 |
```
|
12 |
|
13 |
+
You can see all hyperparameters in the function `eureqa` inside `eureqa.py`.
|
14 |
+
This function generates Julia code which is then executed
|
15 |
+
by `eureqa.jl` and `paralleleureqa.jl`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
|
|
|
|
|
18 |
|
19 |
## Modification
|
20 |
|
dataset.jl
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
# Here is the function we want to learn (x2^2 + cos(x3) + 5)
|
2 |
-
|
3 |
-
##########################
|
4 |
-
# # Dataset to learn
|
5 |
-
const X = convert(Array{Float32, 2}, randn(100, 5)*2)
|
6 |
-
const y = convert(Array{Float32, 1}, ((cx,)->cx^2).(X[:, 2]) + cos.(X[:, 3]) .- 5)
|
7 |
-
##########################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eureqa.jl
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
-
include("hyperparams.jl")
|
2 |
-
include("dataset.jl")
|
3 |
import Optim
|
4 |
|
5 |
const maxdegree = 2
|
|
|
1 |
+
include(".hyperparams.jl")
|
2 |
+
include(".dataset.jl")
|
3 |
import Optim
|
4 |
|
5 |
const maxdegree = 2
|
eureqa.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from argparse import ArgumentParser
|
3 |
+
from collections import namedtuple
|
4 |
+
|
5 |
+
|
6 |
+
def eureqa(threads=4, parsimony=1e-3, alpha=10,
|
7 |
+
maxsize=20, migration=True,
|
8 |
+
hofMigration=True, fractionReplacedHof=0.1,
|
9 |
+
shouldOptimizeConstants=True,
|
10 |
+
binary_operators=["plus", "mult"],
|
11 |
+
unary_operators=["cos", "exp", "sin"],
|
12 |
+
niterations=20, npop=100, annealing=True,
|
13 |
+
ncyclesperiteration=5000, fractionReplaced=0.1,
|
14 |
+
topn=10
|
15 |
+
):
|
16 |
+
|
17 |
+
def_hyperparams = f"""
|
18 |
+
include("operators.jl")
|
19 |
+
##########################
|
20 |
+
# # Allowed operators
|
21 |
+
# (Apparently using const for globals helps speed)
|
22 |
+
const binops = {'[' + ', '.join(binary_operators) + ']'}
|
23 |
+
const unaops = {'[' + ', '.join(unary_operators) + ']'}
|
24 |
+
##########################
|
25 |
+
|
26 |
+
# How many equations to search when replacing
|
27 |
+
const ns=10;
|
28 |
+
|
29 |
+
##################
|
30 |
+
# Hyperparameters
|
31 |
+
# How much to punish complexity
|
32 |
+
const parsimony = {parsimony:f}f0
|
33 |
+
# How much to scale temperature by (T between 0 and 1)
|
34 |
+
const alpha = {alpha:f}f0
|
35 |
+
# Max size of an equation (too large will slow program down)
|
36 |
+
const maxsize = {maxsize:d}
|
37 |
+
# Whether to migrate between threads (you should)
|
38 |
+
const migration = {'true' if migration else 'false'}
|
39 |
+
# Whether to re-introduce best examples seen (helps a lot)
|
40 |
+
const hofMigration = {'true' if hofMigration else 'false'}
|
41 |
+
# Fraction of population to replace with hall of fame
|
42 |
+
const fractionReplacedHof = {fractionReplacedHof}f0
|
43 |
+
# Optimize constants
|
44 |
+
const shouldOptimizeConstants = {'true' if shouldOptimizeConstants else 'false'}
|
45 |
+
##################
|
46 |
+
"""
|
47 |
+
|
48 |
+
def_datasets = """
|
49 |
+
# Here is the function we want to learn (x2^2 + cos(x3) + 5)
|
50 |
+
##########################
|
51 |
+
# # Dataset to learn
|
52 |
+
const X = convert(Array{Float32, 2}, randn(100, 5)*2)
|
53 |
+
const y = convert(Array{Float32, 1}, ((cx,)->cx^2).(X[:, 2]) + cos.(X[:, 3]) .- 5)
|
54 |
+
##########################
|
55 |
+
"""
|
56 |
+
|
57 |
+
with open('.hyperparams.jl', 'w') as f:
|
58 |
+
print(def_hyperparams, file=f)
|
59 |
+
with open('.dataset.jl', 'w') as f:
|
60 |
+
print(def_datasets, file=f)
|
61 |
+
|
62 |
+
command = ' '.join([
|
63 |
+
'julia -O3',
|
64 |
+
f'--threads {threads}',
|
65 |
+
'-e',
|
66 |
+
f'\'include("paralleleureqa.jl"); fullRun({niterations:d}, npop={npop:d}, annealing={"true" if annealing else "false"}, ncyclesperiteration={ncyclesperiteration:d}, fractionReplaced={fractionReplaced:f}f0, verbosity=round(Int32, 1e9), topn={topn:d})\''
|
67 |
+
])
|
68 |
+
import os
|
69 |
+
os.system(command)
|
70 |
+
|
71 |
+
|
72 |
+
if __name__ == "__main__":
|
73 |
+
parser = ArgumentParser()
|
74 |
+
parser.add_argument("--threads", type=int, default=4, help="number of threads")
|
75 |
+
parser.add_argument("--parsimony", type=float, default=4, help="number of threads")
|
76 |
+
parser.add_argument(
|
77 |
+
"--binary-operators", type=str, nargs="+", default=["plus", "mul"],
|
78 |
+
help="Binary operators. Make sure they are defined in operators.jl")
|
79 |
+
parser.add_argument(
|
80 |
+
"--unary-operators", type=str, default=["exp", "sin", "cos"],
|
81 |
+
help="Unary operators. Make sure they are defined in operators.jl")
|
82 |
+
args = vars(parser.parse_args()) #dict
|
83 |
+
|
84 |
+
run(**args)
|
hyperparams.jl
DELETED
@@ -1,33 +0,0 @@
|
|
1 |
-
# Define allowed operators
|
2 |
-
plus(x::Float32, y::Float32)::Float32 = x+y
|
3 |
-
mult(x::Float32, y::Float32)::Float32 = x*y;
|
4 |
-
|
5 |
-
##########################
|
6 |
-
# # Allowed operators
|
7 |
-
# (Apparently using const for globals helps speed)
|
8 |
-
const binops = [plus, mult]
|
9 |
-
const unaops = [sin, cos, exp]
|
10 |
-
##########################
|
11 |
-
|
12 |
-
# How many equations to search when replacing
|
13 |
-
const ns=10;
|
14 |
-
|
15 |
-
##################
|
16 |
-
# Hyperparameters
|
17 |
-
# How much to punish complexity
|
18 |
-
const parsimony = 1f-3
|
19 |
-
# How much to scale temperature by (T between 0 and 1)
|
20 |
-
const alpha = 10.0f0
|
21 |
-
# Max size of an equation (too large will slow program down)
|
22 |
-
const maxsize = 20
|
23 |
-
# Whether to migrate between threads (you should)
|
24 |
-
const migration = true
|
25 |
-
# Whether to re-introduce best examples seen (helps a lot)
|
26 |
-
const hofMigration = true
|
27 |
-
# Fraction of population to replace with hall of fame
|
28 |
-
const fractionReplacedHof = 0.1f0
|
29 |
-
# Optimize constants
|
30 |
-
const shouldOptimizeConstants = true
|
31 |
-
##################
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
operators.jl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# Define allowed operators
|
2 |
+
plus(x::Float32, y::Float32)::Float32 = x+y
|
3 |
+
mult(x::Float32, y::Float32)::Float32 = x*y;
|