Spaces:
Sleeping
Sleeping
MilesCranmer
commited on
Commit
•
d18011f
1
Parent(s):
3bea8e3
Revert to old torch export
Browse files- Installing a separate but optional library with dependency on torch introduced
too many difficulties. In the end, the simplest solution is to just
maintain a separate codebase here.
- .github/workflows/CI.yml +1 -1
- .github/workflows/CI_Windows.yml +1 -1
- .github/workflows/CI_mac.yml +1 -1
- pysr/export_torch.py +142 -26
.github/workflows/CI.yml
CHANGED
@@ -73,7 +73,7 @@ jobs:
|
|
73 |
run: coverage run --append --source=pysr --omit='*/feynman_problems.py' -m unittest test.test_jax
|
74 |
shell: bash
|
75 |
- name: "Install Torch"
|
76 |
-
run: pip install torch
|
77 |
shell: bash
|
78 |
- name: "Run Torch tests"
|
79 |
run: coverage run --append --source=pysr --omit='*/feynman_problems.py' -m unittest test.test_torch
|
|
|
73 |
run: coverage run --append --source=pysr --omit='*/feynman_problems.py' -m unittest test.test_jax
|
74 |
shell: bash
|
75 |
- name: "Install Torch"
|
76 |
+
run: pip install torch # (optional import)
|
77 |
shell: bash
|
78 |
- name: "Run Torch tests"
|
79 |
run: coverage run --append --source=pysr --omit='*/feynman_problems.py' -m unittest test.test_torch
|
.github/workflows/CI_Windows.yml
CHANGED
@@ -65,7 +65,7 @@ jobs:
|
|
65 |
run: python -m unittest test.test
|
66 |
shell: bash
|
67 |
- name: "Install Torch"
|
68 |
-
run: pip install torch
|
69 |
shell: bash
|
70 |
- name: "Run Torch tests"
|
71 |
run: python -m unittest test.test_torch
|
|
|
65 |
run: python -m unittest test.test
|
66 |
shell: bash
|
67 |
- name: "Install Torch"
|
68 |
+
run: pip install torch # (optional import)
|
69 |
shell: bash
|
70 |
- name: "Run Torch tests"
|
71 |
run: python -m unittest test.test_torch
|
.github/workflows/CI_mac.yml
CHANGED
@@ -71,7 +71,7 @@ jobs:
|
|
71 |
run: python -m unittest test.test_jax
|
72 |
shell: bash
|
73 |
- name: "Install Torch"
|
74 |
-
run: pip install torch
|
75 |
shell: bash
|
76 |
- name: "Run Torch tests"
|
77 |
run: python -m unittest test.test_torch
|
|
|
71 |
run: python -m unittest test.test_jax
|
72 |
shell: bash
|
73 |
- name: "Install Torch"
|
74 |
+
run: pip install torch # (optional import)
|
75 |
shell: bash
|
76 |
- name: "Run Torch tests"
|
77 |
run: python -m unittest test.test_torch
|
pysr/export_torch.py
CHANGED
@@ -1,47 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import collections as co
|
|
|
2 |
import sympy
|
3 |
|
|
|
|
|
|
|
|
|
|
|
4 |
torch_initialized = False
|
5 |
torch = None
|
6 |
-
|
7 |
-
|
|
|
8 |
|
9 |
def _initialize_torch():
|
10 |
global torch_initialized
|
11 |
global torch
|
12 |
-
global
|
13 |
-
global
|
|
|
14 |
|
15 |
-
# Way to lazy load torch
|
16 |
# but still allow this module to be loaded in __init__
|
17 |
if not torch_initialized:
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
selection=None, extra_funcs=None, **kwargs):
|
29 |
super().__init__(**kwargs)
|
30 |
-
self._module = sympytorch.SymPyModule(
|
31 |
-
expressions=[expression],
|
32 |
-
extra_funcs=extra_funcs)
|
33 |
-
self._selection = selection
|
34 |
-
self._symbols = symbols_in
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
def __repr__(self):
|
37 |
return f"{type(self).__name__}(expression={self._expression_string})"
|
38 |
|
39 |
def forward(self, X):
|
40 |
if self._selection is not None:
|
41 |
X = X[:, self._selection]
|
42 |
-
symbols = {
|
43 |
-
for i, symbol in enumerate(self.
|
44 |
-
return self.
|
45 |
|
46 |
|
47 |
def sympy2torch(expression, symbols_in,
|
@@ -51,11 +168,10 @@ def sympy2torch(expression, symbols_in,
|
|
51 |
This function will assume the input to the module is a matrix X, where
|
52 |
each column corresponds to each symbol you pass in `symbols_in`.
|
53 |
"""
|
54 |
-
global
|
55 |
|
56 |
_initialize_torch()
|
57 |
|
58 |
-
return
|
59 |
-
|
60 |
-
|
61 |
-
extra_funcs=extra_torch_mappings)
|
|
|
1 |
+
#####
|
2 |
+
# From https://github.com/patrick-kidger/sympytorch
|
3 |
+
# Copied here to allow PySR-specific tweaks
|
4 |
+
#####
|
5 |
+
|
6 |
import collections as co
|
7 |
+
import functools as ft
|
8 |
import sympy
|
9 |
|
10 |
+
def _reduce(fn):
|
11 |
+
def fn_(*args):
|
12 |
+
return ft.reduce(fn, args)
|
13 |
+
return fn_
|
14 |
+
|
15 |
torch_initialized = False
|
16 |
torch = None
|
17 |
+
_global_func_lookup = None
|
18 |
+
_Node = None
|
19 |
+
SingleSymPyModule = None
|
20 |
|
21 |
def _initialize_torch():
|
22 |
global torch_initialized
|
23 |
global torch
|
24 |
+
global _global_func_lookup
|
25 |
+
global _Node
|
26 |
+
global SingleSymPyModule
|
27 |
|
28 |
+
# Way to lazy load torch, only if this is called,
|
29 |
# but still allow this module to be loaded in __init__
|
30 |
if not torch_initialized:
|
31 |
+
import torch as _torch
|
32 |
+
torch = _torch
|
33 |
+
|
34 |
+
_global_func_lookup = {
|
35 |
+
sympy.Mul: _reduce(torch.mul),
|
36 |
+
sympy.Add: _reduce(torch.add),
|
37 |
+
sympy.div: torch.div,
|
38 |
+
sympy.Abs: torch.abs,
|
39 |
+
sympy.sign: torch.sign,
|
40 |
+
# Note: May raise error for ints.
|
41 |
+
sympy.ceiling: torch.ceil,
|
42 |
+
sympy.floor: torch.floor,
|
43 |
+
sympy.log: torch.log,
|
44 |
+
sympy.exp: torch.exp,
|
45 |
+
sympy.sqrt: torch.sqrt,
|
46 |
+
sympy.cos: torch.cos,
|
47 |
+
sympy.acos: torch.acos,
|
48 |
+
sympy.sin: torch.sin,
|
49 |
+
sympy.asin: torch.asin,
|
50 |
+
sympy.tan: torch.tan,
|
51 |
+
sympy.atan: torch.atan,
|
52 |
+
sympy.atan2: torch.atan2,
|
53 |
+
# Note: May give NaN for complex results.
|
54 |
+
sympy.cosh: torch.cosh,
|
55 |
+
sympy.acosh: torch.acosh,
|
56 |
+
sympy.sinh: torch.sinh,
|
57 |
+
sympy.asinh: torch.asinh,
|
58 |
+
sympy.tanh: torch.tanh,
|
59 |
+
sympy.atanh: torch.atanh,
|
60 |
+
sympy.Pow: torch.pow,
|
61 |
+
sympy.re: torch.real,
|
62 |
+
sympy.im: torch.imag,
|
63 |
+
sympy.arg: torch.angle,
|
64 |
+
# Note: May raise error for ints and complexes
|
65 |
+
sympy.erf: torch.erf,
|
66 |
+
sympy.loggamma: torch.lgamma,
|
67 |
+
sympy.Eq: torch.eq,
|
68 |
+
sympy.Ne: torch.ne,
|
69 |
+
sympy.StrictGreaterThan: torch.gt,
|
70 |
+
sympy.StrictLessThan: torch.lt,
|
71 |
+
sympy.LessThan: torch.le,
|
72 |
+
sympy.GreaterThan: torch.ge,
|
73 |
+
sympy.And: torch.logical_and,
|
74 |
+
sympy.Or: torch.logical_or,
|
75 |
+
sympy.Not: torch.logical_not,
|
76 |
+
sympy.Max: torch.max,
|
77 |
+
sympy.Min: torch.min,
|
78 |
+
# Matrices
|
79 |
+
sympy.MatAdd: torch.add,
|
80 |
+
sympy.HadamardProduct: torch.mul,
|
81 |
+
sympy.Trace: torch.trace,
|
82 |
+
# Note: May raise error for integer matrices.
|
83 |
+
sympy.Determinant: torch.det,
|
84 |
+
}
|
85 |
+
|
86 |
+
class _Node(torch.nn.Module):
|
87 |
+
"""SympyTorch code from https://github.com/patrick-kidger/sympytorch"""
|
88 |
+
def __init__(self, *, expr, _memodict, _func_lookup, **kwargs):
|
89 |
+
super().__init__(**kwargs)
|
90 |
+
|
91 |
+
self._sympy_func = expr.func
|
92 |
|
93 |
+
if issubclass(expr.func, sympy.Float):
|
94 |
+
self._value = torch.nn.Parameter(torch.tensor(float(expr)))
|
95 |
+
self._torch_func = lambda: self._value
|
96 |
+
self._args = ()
|
97 |
+
elif issubclass(expr.func, sympy.UnevaluatedExpr):
|
98 |
+
if len(expr.args) != 1 or not issubclass(expr.args[0].func, sympy.Float):
|
99 |
+
raise ValueError("UnevaluatedExpr should only be used to wrap floats.")
|
100 |
+
self.register_buffer('_value', torch.tensor(float(expr.args[0])))
|
101 |
+
self._torch_func = lambda: self._value
|
102 |
+
self._args = ()
|
103 |
+
elif issubclass(expr.func, sympy.Integer):
|
104 |
+
# Can get here if expr is one of the Integer special cases,
|
105 |
+
# e.g. NegativeOne
|
106 |
+
self._value = int(expr)
|
107 |
+
self._torch_func = lambda: self._value
|
108 |
+
self._args = ()
|
109 |
+
elif issubclass(expr.func, sympy.Symbol):
|
110 |
+
self._name = expr.name
|
111 |
+
self._torch_func = lambda value: value
|
112 |
+
self._args = ((lambda memodict: memodict[expr.name]),)
|
113 |
+
else:
|
114 |
+
self._torch_func = _func_lookup[expr.func]
|
115 |
+
args = []
|
116 |
+
for arg in expr.args:
|
117 |
+
try:
|
118 |
+
arg_ = _memodict[arg]
|
119 |
+
except KeyError:
|
120 |
+
arg_ = type(self)(expr=arg, _memodict=_memodict, _func_lookup=_func_lookup, **kwargs)
|
121 |
+
_memodict[arg] = arg_
|
122 |
+
args.append(arg_)
|
123 |
+
self._args = torch.nn.ModuleList(args)
|
124 |
|
125 |
+
def forward(self, memodict):
|
126 |
+
args = []
|
127 |
+
for arg in self._args:
|
128 |
+
try:
|
129 |
+
arg_ = memodict[arg]
|
130 |
+
except KeyError:
|
131 |
+
arg_ = arg(memodict)
|
132 |
+
memodict[arg] = arg_
|
133 |
+
args.append(arg_)
|
134 |
+
return self._torch_func(*args)
|
135 |
+
|
136 |
+
|
137 |
+
class SingleSymPyModule(torch.nn.Module):
|
138 |
+
"""SympyTorch code from https://github.com/patrick-kidger/sympytorch"""
|
139 |
+
def __init__(self, expression, symbols_in,
|
140 |
selection=None, extra_funcs=None, **kwargs):
|
141 |
super().__init__(**kwargs)
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
+
if extra_funcs is None:
|
144 |
+
extra_funcs = {}
|
145 |
+
_func_lookup = co.ChainMap(_global_func_lookup, extra_funcs)
|
146 |
+
|
147 |
+
_memodict = {}
|
148 |
+
self._node = _Node(expr=expression, _memodict=_memodict, _func_lookup=_func_lookup)
|
149 |
+
self._expression_string = str(expression)
|
150 |
+
self._selection = selection
|
151 |
+
self.symbols_in = [str(symbol) for symbol in symbols_in]
|
152 |
+
|
153 |
def __repr__(self):
|
154 |
return f"{type(self).__name__}(expression={self._expression_string})"
|
155 |
|
156 |
def forward(self, X):
|
157 |
if self._selection is not None:
|
158 |
X = X[:, self._selection]
|
159 |
+
symbols = {symbol: X[:, i]
|
160 |
+
for i, symbol in enumerate(self.symbols_in)}
|
161 |
+
return self._node(symbols)
|
162 |
|
163 |
|
164 |
def sympy2torch(expression, symbols_in,
|
|
|
168 |
This function will assume the input to the module is a matrix X, where
|
169 |
each column corresponds to each symbol you pass in `symbols_in`.
|
170 |
"""
|
171 |
+
global SingleSymPyModule
|
172 |
|
173 |
_initialize_torch()
|
174 |
|
175 |
+
return SingleSymPyModule(expression, symbols_in,
|
176 |
+
selection=selection,
|
177 |
+
extra_funcs=extra_torch_mappings)
|
|