Spaces:
Running
Running
MilesCranmer
commited on
Give quick start example
Browse files
README.md
CHANGED
@@ -11,10 +11,40 @@ For python, you need to have Python 3, numpy, and pandas installed.
|
|
11 |
|
12 |
## Running:
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
What follows is the API reference for running the numpy interface.
|
15 |
-
Note that
|
16 |
have been tuned with ~1000 trials over several example
|
17 |
-
equations
|
|
|
18 |
`binary_operators`, `unary_operators` to your requirements.
|
19 |
|
20 |
The program will output a pandas DataFrame containing the equations,
|
@@ -30,7 +60,15 @@ You can also change the dataset learned on by passing in `X` and `y` as
|
|
30 |
numpy arrays to `eureqa(...)`.
|
31 |
|
32 |
```python
|
33 |
-
eureqa(X=None, y=None, threads=4, niterations=20, ncyclesperiteration=int(default_ncyclesperiteration),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
```
|
35 |
|
36 |
Run symbolic regression to fit f(X[i, :]) ~ y[i] for all i.
|
|
|
11 |
|
12 |
## Running:
|
13 |
|
14 |
+
### Quickstart
|
15 |
+
|
16 |
+
```python
|
17 |
+
import numpy as np
|
18 |
+
from eureqa import eureqa
|
19 |
+
|
20 |
+
# Dataset
|
21 |
+
X = 2*np.random.randn(100, 5)
|
22 |
+
y = 2*np.cos(X[:, 3]) + X[:, 0]**2 - 2
|
23 |
+
|
24 |
+
# Learn equations
|
25 |
+
equations = eureqa(X, y, niterations=5)
|
26 |
+
|
27 |
+
...
|
28 |
+
|
29 |
+
print(equations)
|
30 |
+
```
|
31 |
+
|
32 |
+
which gives:
|
33 |
+
|
34 |
+
```
|
35 |
+
Complexity MSE Equation
|
36 |
+
0 5 1.947431 plus(-1.7420927, mult(x0, x0))
|
37 |
+
1 8 0.486858 plus(-1.8710494, plus(cos(x3), mult(x0, x0)))
|
38 |
+
2 11 0.000000 plus(plus(mult(x0, x0), cos(x3)), plus(-2.0, cos(x3)))
|
39 |
+
```
|
40 |
+
|
41 |
+
### API
|
42 |
+
|
43 |
What follows is the API reference for running the numpy interface.
|
44 |
+
Note that most parameters here
|
45 |
have been tuned with ~1000 trials over several example
|
46 |
+
equations, so you don't need to tune them yourself.
|
47 |
+
However, you should adjust `threads`, `niterations`,
|
48 |
`binary_operators`, `unary_operators` to your requirements.
|
49 |
|
50 |
The program will output a pandas DataFrame containing the equations,
|
|
|
60 |
numpy arrays to `eureqa(...)`.
|
61 |
|
62 |
```python
|
63 |
+
eureqa(X=None, y=None, threads=4, niterations=20, ncyclesperiteration=int(default_ncyclesperiteration),
|
64 |
+
binary_operators=["plus", "mult"], unary_operators=["cos", "exp", "sin"], alpha=default_alpha,
|
65 |
+
annealing=True, fractionReplaced=default_fractionReplaced, fractionReplacedHof=default_fractionReplacedHof,
|
66 |
+
npop=int(default_npop), parsimony=default_parsimony, migration=True, hofMigration=True
|
67 |
+
shouldOptimizeConstants=True, topn=int(default_topn), weightAddNode=default_weightAddNode,
|
68 |
+
weightDeleteNode=default_weightDeleteNode, weightDoNothing=default_weightDoNothing,
|
69 |
+
weightMutateConstant=default_weightMutateConstant, weightMutateOperator=default_weightMutateOperator,
|
70 |
+
weightRandomize=default_weightRandomize, weightSimplify=default_weightSimplify, timeout=None,
|
71 |
+
equation_file='hall_of_fame.csv', test='simple1', maxsize=20)
|
72 |
```
|
73 |
|
74 |
Run symbolic regression to fit f(X[i, :]) ~ y[i] for all i.
|