Spaces:
Running
Running
MilesCranmer
commited on
Allow user to specify whole loss function
Browse files- pysr/sr.py +29 -4
- pysr/version.py +1 -1
pysr/sr.py
CHANGED
@@ -319,9 +319,9 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|
319 |
argument is constrained.
|
320 |
Default is `None`.
|
321 |
loss : str
|
322 |
-
String of Julia code specifying
|
323 |
-
be a loss from LossFunctions.jl, or your own loss
|
324 |
-
function. Examples of custom written losses include:
|
325 |
`myloss(x, y) = abs(x-y)` for non-weighted, or
|
326 |
`myloss(x, y, w) = w*abs(x-y)` for weighted.
|
327 |
The included losses include:
|
@@ -334,6 +334,23 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|
334 |
`ModifiedHuberLoss()`, `L2MarginLoss()`, `ExpLoss()`,
|
335 |
`SigmoidLoss()`, `DWDMarginLoss(q)`.
|
336 |
Default is `"L2DistLoss()"`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
complexity_of_operators : dict[str, float]
|
338 |
If you would like to use a complexity other than 1 for an
|
339 |
operator, specify the complexity here. For example,
|
@@ -675,7 +692,8 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|
675 |
timeout_in_seconds=None,
|
676 |
constraints=None,
|
677 |
nested_constraints=None,
|
678 |
-
loss=
|
|
|
679 |
complexity_of_operators=None,
|
680 |
complexity_of_constants=1,
|
681 |
complexity_of_variables=1,
|
@@ -763,6 +781,7 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|
763 |
self.early_stop_condition = early_stop_condition
|
764 |
# - Loss parameters
|
765 |
self.loss = loss
|
|
|
766 |
self.complexity_of_operators = complexity_of_operators
|
767 |
self.complexity_of_constants = complexity_of_constants
|
768 |
self.complexity_of_variables = complexity_of_variables
|
@@ -1217,6 +1236,9 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|
1217 |
"to True and `procs` to 0 will result in non-deterministic searches. "
|
1218 |
)
|
1219 |
|
|
|
|
|
|
|
1220 |
# NotImplementedError - Values that could be supported at a later time
|
1221 |
if self.optimizer_algorithm not in VALID_OPTIMIZER_ALGORITHMS:
|
1222 |
raise NotImplementedError(
|
@@ -1546,6 +1568,8 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|
1546 |
complexity_of_operators = Main.eval(complexity_of_operators_str)
|
1547 |
|
1548 |
custom_loss = Main.eval(self.loss)
|
|
|
|
|
1549 |
early_stop_condition = Main.eval(
|
1550 |
str(self.early_stop_condition) if self.early_stop_condition else None
|
1551 |
)
|
@@ -1574,6 +1598,7 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|
1574 |
complexity_of_variables=self.complexity_of_variables,
|
1575 |
nested_constraints=nested_constraints,
|
1576 |
elementwise_loss=custom_loss,
|
|
|
1577 |
maxsize=int(self.maxsize),
|
1578 |
output_file=_escape_filename(self.equation_file_),
|
1579 |
npopulations=int(self.populations),
|
|
|
319 |
argument is constrained.
|
320 |
Default is `None`.
|
321 |
loss : str
|
322 |
+
String of Julia code specifying an elementwise loss function.
|
323 |
+
Can either be a loss from LossFunctions.jl, or your own loss
|
324 |
+
written as a function. Examples of custom written losses include:
|
325 |
`myloss(x, y) = abs(x-y)` for non-weighted, or
|
326 |
`myloss(x, y, w) = w*abs(x-y)` for weighted.
|
327 |
The included losses include:
|
|
|
334 |
`ModifiedHuberLoss()`, `L2MarginLoss()`, `ExpLoss()`,
|
335 |
`SigmoidLoss()`, `DWDMarginLoss(q)`.
|
336 |
Default is `"L2DistLoss()"`.
|
337 |
+
full_objective : str
|
338 |
+
Alternatively, you can specify the full objective function as
|
339 |
+
a snippet of Julia code, including any sort of custom evaluation
|
340 |
+
(including symbolic manipulations beforehand), and any sort
|
341 |
+
of loss function or regularizations. The default `full_objective`
|
342 |
+
used in SymbolicRegression.jl is roughly equal to:
|
343 |
+
```julia
|
344 |
+
function eval_loss(tree, dataset::Dataset{T}, options) where T
|
345 |
+
prediction, flag = eval_tree_array(tree, dataset.X, options)
|
346 |
+
if !flag
|
347 |
+
return T(Inf)
|
348 |
+
end
|
349 |
+
sum((prediction .- dataset.y) .^ 2) / dataset.n
|
350 |
+
end
|
351 |
+
```
|
352 |
+
where the example elementwise loss is mean-squared error.
|
353 |
+
Default is `None`.
|
354 |
complexity_of_operators : dict[str, float]
|
355 |
If you would like to use a complexity other than 1 for an
|
356 |
operator, specify the complexity here. For example,
|
|
|
692 |
timeout_in_seconds=None,
|
693 |
constraints=None,
|
694 |
nested_constraints=None,
|
695 |
+
loss=None,
|
696 |
+
full_objective=None,
|
697 |
complexity_of_operators=None,
|
698 |
complexity_of_constants=1,
|
699 |
complexity_of_variables=1,
|
|
|
781 |
self.early_stop_condition = early_stop_condition
|
782 |
# - Loss parameters
|
783 |
self.loss = loss
|
784 |
+
self.full_objective = full_objective
|
785 |
self.complexity_of_operators = complexity_of_operators
|
786 |
self.complexity_of_constants = complexity_of_constants
|
787 |
self.complexity_of_variables = complexity_of_variables
|
|
|
1236 |
"to True and `procs` to 0 will result in non-deterministic searches. "
|
1237 |
)
|
1238 |
|
1239 |
+
if self.loss is not None and self.full_objective is not None:
|
1240 |
+
raise ValueError("You cannot set both `loss` and `objective`.")
|
1241 |
+
|
1242 |
# NotImplementedError - Values that could be supported at a later time
|
1243 |
if self.optimizer_algorithm not in VALID_OPTIMIZER_ALGORITHMS:
|
1244 |
raise NotImplementedError(
|
|
|
1568 |
complexity_of_operators = Main.eval(complexity_of_operators_str)
|
1569 |
|
1570 |
custom_loss = Main.eval(self.loss)
|
1571 |
+
custom_full_objective = Main.eval(self.full_objective)
|
1572 |
+
|
1573 |
early_stop_condition = Main.eval(
|
1574 |
str(self.early_stop_condition) if self.early_stop_condition else None
|
1575 |
)
|
|
|
1598 |
complexity_of_variables=self.complexity_of_variables,
|
1599 |
nested_constraints=nested_constraints,
|
1600 |
elementwise_loss=custom_loss,
|
1601 |
+
loss_function=custom_full_objective,
|
1602 |
maxsize=int(self.maxsize),
|
1603 |
output_file=_escape_filename(self.equation_file_),
|
1604 |
npopulations=int(self.populations),
|
pysr/version.py
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
-
__version__ = "0.11.
|
2 |
__symbolic_regression_jl_version__ = "0.15.3"
|
|
|
1 |
+
__version__ = "0.11.18"
|
2 |
__symbolic_regression_jl_version__ = "0.15.3"
|