Spaces:
Sleeping
Sleeping
MilesCranmer
commited on
Commit
•
fb950bb
1
Parent(s):
68b3673
Refactor lazy loading of torch and jax
Browse files- pysr/__init__.py +2 -0
- pysr/export_jax.py +28 -3
- pysr/export_torch.py +176 -152
- test/test_jax.py +1 -1
pysr/__init__.py
CHANGED
@@ -1,2 +1,4 @@
|
|
1 |
from .sr import pysr, get_hof, best, best_tex, best_callable, best_row
|
2 |
from .feynman_problems import Problem, FeynmanProblem
|
|
|
|
|
|
1 |
from .sr import pysr, get_hof, best, best_tex, best_callable, best_row
|
2 |
from .feynman_problems import Problem, FeynmanProblem
|
3 |
+
from .export_jax import sympy2jax
|
4 |
+
from .export_torch import sympy2torch
|
pysr/export_jax.py
CHANGED
@@ -2,9 +2,6 @@ import functools as ft
|
|
2 |
import sympy
|
3 |
import string
|
4 |
import random
|
5 |
-
import jax
|
6 |
-
from jax import numpy as jnp
|
7 |
-
from jax.scipy import special as jsp
|
8 |
|
9 |
# Special since need to reduce arguments.
|
10 |
MUL = 0
|
@@ -53,6 +50,7 @@ _jnp_func_lookup = {
|
|
53 |
sympy.Mod: "jnp.mod",
|
54 |
}
|
55 |
|
|
|
56 |
def sympy2jaxtext(expr, parameters, symbols_in):
|
57 |
if issubclass(expr.func, sympy.Float):
|
58 |
parameters.append(float(expr))
|
@@ -71,6 +69,27 @@ def sympy2jaxtext(expr, parameters, symbols_in):
|
|
71 |
else:
|
72 |
return f'{_func}({", ".join(args)})'
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
def sympy2jax(expression, symbols_in):
|
75 |
"""Returns a function f and its parameters;
|
76 |
the function takes an input matrix, and a list of arguments:
|
@@ -142,6 +161,12 @@ def sympy2jax(expression, symbols_in):
|
|
142 |
# 3.5427954 , -2.7479894 ], dtype=float32)
|
143 |
```
|
144 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
parameters = []
|
146 |
functional_form_text = sympy2jaxtext(expression, parameters, symbols_in)
|
147 |
hash_string = 'A_' + str(abs(hash(str(expression) + str(symbols_in))))
|
|
|
2 |
import sympy
|
3 |
import string
|
4 |
import random
|
|
|
|
|
|
|
5 |
|
6 |
# Special since need to reduce arguments.
|
7 |
MUL = 0
|
|
|
50 |
sympy.Mod: "jnp.mod",
|
51 |
}
|
52 |
|
53 |
+
|
54 |
def sympy2jaxtext(expr, parameters, symbols_in):
|
55 |
if issubclass(expr.func, sympy.Float):
|
56 |
parameters.append(float(expr))
|
|
|
69 |
else:
|
70 |
return f'{_func}({", ".join(args)})'
|
71 |
|
72 |
+
|
73 |
+
jax_initialized = False
|
74 |
+
jax = None
|
75 |
+
jnp = None
|
76 |
+
jsp = None
|
77 |
+
|
78 |
+
def _initialize_jax():
|
79 |
+
global jax_initialized
|
80 |
+
global jax
|
81 |
+
global jnp
|
82 |
+
global jsp
|
83 |
+
|
84 |
+
if not jax_initialized:
|
85 |
+
import jax as _jax
|
86 |
+
from jax import numpy as _jnp
|
87 |
+
from jax.scipy import special as _jsp
|
88 |
+
jax = _jax
|
89 |
+
jnp = _jnp
|
90 |
+
jsp = _jsp
|
91 |
+
|
92 |
+
|
93 |
def sympy2jax(expression, symbols_in):
|
94 |
"""Returns a function f and its parameters;
|
95 |
the function takes an input matrix, and a list of arguments:
|
|
|
161 |
# 3.5427954 , -2.7479894 ], dtype=float32)
|
162 |
```
|
163 |
"""
|
164 |
+
_initialize_jax()
|
165 |
+
global jax_initialized
|
166 |
+
global jax
|
167 |
+
global jnp
|
168 |
+
global jsp
|
169 |
+
|
170 |
parameters = []
|
171 |
functional_form_text = sympy2jaxtext(expression, parameters, symbols_in)
|
172 |
hash_string = 'A_' + str(abs(hash(str(expression) + str(symbols_in))))
|
pysr/export_torch.py
CHANGED
@@ -6,165 +6,189 @@
|
|
6 |
import collections as co
|
7 |
import functools as ft
|
8 |
import sympy
|
9 |
-
import torch
|
10 |
|
11 |
def _reduce(fn):
|
12 |
def fn_(*args):
|
13 |
return ft.reduce(fn, args)
|
14 |
return fn_
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
_global_func_lookup = {
|
18 |
-
sympy.Mul: _reduce(torch.mul),
|
19 |
-
sympy.Add: _reduce(torch.add),
|
20 |
-
sympy.div: torch.div,
|
21 |
-
sympy.Abs: torch.abs,
|
22 |
-
sympy.sign: torch.sign,
|
23 |
-
# Note: May raise error for ints.
|
24 |
-
sympy.ceiling: torch.ceil,
|
25 |
-
sympy.floor: torch.floor,
|
26 |
-
sympy.log: torch.log,
|
27 |
-
sympy.exp: torch.exp,
|
28 |
-
sympy.sqrt: torch.sqrt,
|
29 |
-
sympy.cos: torch.cos,
|
30 |
-
sympy.acos: torch.acos,
|
31 |
-
sympy.sin: torch.sin,
|
32 |
-
sympy.asin: torch.asin,
|
33 |
-
sympy.tan: torch.tan,
|
34 |
-
sympy.atan: torch.atan,
|
35 |
-
sympy.atan2: torch.atan2,
|
36 |
-
# Note: May give NaN for complex results.
|
37 |
-
sympy.cosh: torch.cosh,
|
38 |
-
sympy.acosh: torch.acosh,
|
39 |
-
sympy.sinh: torch.sinh,
|
40 |
-
sympy.asinh: torch.asinh,
|
41 |
-
sympy.tanh: torch.tanh,
|
42 |
-
sympy.atanh: torch.atanh,
|
43 |
-
sympy.Pow: torch.pow,
|
44 |
-
sympy.re: torch.real,
|
45 |
-
sympy.im: torch.imag,
|
46 |
-
sympy.arg: torch.angle,
|
47 |
-
# Note: May raise error for ints and complexes
|
48 |
-
sympy.erf: torch.erf,
|
49 |
-
sympy.loggamma: torch.lgamma,
|
50 |
-
sympy.Eq: torch.eq,
|
51 |
-
sympy.Ne: torch.ne,
|
52 |
-
sympy.StrictGreaterThan: torch.gt,
|
53 |
-
sympy.StrictLessThan: torch.lt,
|
54 |
-
sympy.LessThan: torch.le,
|
55 |
-
sympy.GreaterThan: torch.ge,
|
56 |
-
sympy.And: torch.logical_and,
|
57 |
-
sympy.Or: torch.logical_or,
|
58 |
-
sympy.Not: torch.logical_not,
|
59 |
-
sympy.Max: torch.max,
|
60 |
-
sympy.Min: torch.min,
|
61 |
-
# Matrices
|
62 |
-
sympy.MatAdd: torch.add,
|
63 |
-
sympy.HadamardProduct: torch.mul,
|
64 |
-
sympy.Trace: torch.trace,
|
65 |
-
# Note: May raise error for integer matrices.
|
66 |
-
sympy.Determinant: torch.det,
|
67 |
-
}
|
68 |
-
|
69 |
-
class _Node(torch.nn.Module):
|
70 |
-
def __init__(self, *, expr, _memodict, _func_lookup, **kwargs):
|
71 |
-
super().__init__(**kwargs)
|
72 |
-
|
73 |
-
self._sympy_func = expr.func
|
74 |
-
|
75 |
-
if issubclass(expr.func, sympy.Float):
|
76 |
-
self._value = torch.nn.Parameter(torch.tensor(float(expr)))
|
77 |
-
self._torch_func = lambda: self._value
|
78 |
-
self._args = ()
|
79 |
-
elif issubclass(expr.func, sympy.UnevaluatedExpr):
|
80 |
-
if len(expr.args) != 1 or not issubclass(expr.args[0].func, sympy.Float):
|
81 |
-
raise ValueError("UnevaluatedExpr should only be used to wrap floats.")
|
82 |
-
self.register_buffer('_value', torch.tensor(float(expr.args[0])))
|
83 |
-
self._torch_func = lambda: self._value
|
84 |
-
self._args = ()
|
85 |
-
elif issubclass(expr.func, sympy.Integer):
|
86 |
-
# Can get here if expr is one of the Integer special cases,
|
87 |
-
# e.g. NegativeOne
|
88 |
-
self._value = int(expr)
|
89 |
-
self._torch_func = lambda: self._value
|
90 |
-
self._args = ()
|
91 |
-
elif issubclass(expr.func, sympy.Symbol):
|
92 |
-
self._name = expr.name
|
93 |
-
self._torch_func = lambda value: value
|
94 |
-
self._args = ((lambda memodict: memodict[expr.name]),)
|
95 |
-
else:
|
96 |
-
self._torch_func = _func_lookup[expr.func]
|
97 |
-
args = []
|
98 |
-
for arg in expr.args:
|
99 |
-
try:
|
100 |
-
arg_ = _memodict[arg]
|
101 |
-
except KeyError:
|
102 |
-
arg_ = type(self)(expr=arg, _memodict=_memodict, _func_lookup=_func_lookup, **kwargs)
|
103 |
-
_memodict[arg] = arg_
|
104 |
-
args.append(arg_)
|
105 |
-
self._args = torch.nn.ModuleList(args)
|
106 |
-
|
107 |
-
def sympy(self, _memodict):
|
108 |
-
if issubclass(self._sympy_func, sympy.Float):
|
109 |
-
return self._sympy_func(self._value.item())
|
110 |
-
elif issubclass(self._sympy_func, sympy.UnevaluatedExpr):
|
111 |
-
return self._sympy_func(self._value.item())
|
112 |
-
elif issubclass(self._sympy_func, sympy.Integer):
|
113 |
-
return self._sympy_func(self._value)
|
114 |
-
elif issubclass(self._sympy_func, sympy.Symbol):
|
115 |
-
return self._sympy_func(self._name)
|
116 |
-
else:
|
117 |
-
if issubclass(self._sympy_func, (sympy.Min, sympy.Max)):
|
118 |
-
evaluate = False
|
119 |
-
else:
|
120 |
-
evaluate = True
|
121 |
-
args = []
|
122 |
-
for arg in self._args:
|
123 |
-
try:
|
124 |
-
arg_ = _memodict[arg]
|
125 |
-
except KeyError:
|
126 |
-
arg_ = arg.sympy(_memodict)
|
127 |
-
_memodict[arg] = arg_
|
128 |
-
args.append(arg_)
|
129 |
-
return self._sympy_func(*args, evaluate=evaluate)
|
130 |
-
|
131 |
-
def forward(self, memodict):
|
132 |
-
args = []
|
133 |
-
for arg in self._args:
|
134 |
-
try:
|
135 |
-
arg_ = memodict[arg]
|
136 |
-
except KeyError:
|
137 |
-
arg_ = arg(memodict)
|
138 |
-
memodict[arg] = arg_
|
139 |
-
args.append(arg_)
|
140 |
-
return self._torch_func(*args)
|
141 |
-
|
142 |
-
|
143 |
-
class SingleSymPyModule(torch.nn.Module):
|
144 |
-
def __init__(self, expression, symbols_in,
|
145 |
-
extra_funcs=None, **kwargs):
|
146 |
-
super().__init__(**kwargs)
|
147 |
-
|
148 |
-
if extra_funcs is None:
|
149 |
-
extra_funcs = {}
|
150 |
-
_func_lookup = co.ChainMap(_global_func_lookup, extra_funcs)
|
151 |
-
|
152 |
-
_memodict = {}
|
153 |
-
self._node = _Node(expr=expression, _memodict=_memodict, _func_lookup=_func_lookup)
|
154 |
-
self._expression_string = str(expression)
|
155 |
-
self.symbols_in = [str(symbol) for symbol in symbols_in]
|
156 |
-
|
157 |
-
def __repr__(self):
|
158 |
-
return f"{type(self).__name__}(expression={self._expression_string})"
|
159 |
-
|
160 |
-
def sympy(self):
|
161 |
-
_memodict = {}
|
162 |
-
return self._node.sympy(_memodict)
|
163 |
-
|
164 |
-
def forward(self, X):
|
165 |
-
symbols = {symbol: X[:, i]
|
166 |
-
for i, symbol in enumerate(self.symbols_in)}
|
167 |
-
return self._node(symbols)
|
168 |
|
169 |
def sympy2torch(expression, symbols_in):
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
return SingleSymPyModule(expression, symbols_in)
|
|
|
6 |
import collections as co
|
7 |
import functools as ft
|
8 |
import sympy
|
|
|
9 |
|
10 |
def _reduce(fn):
|
11 |
def fn_(*args):
|
12 |
return ft.reduce(fn, args)
|
13 |
return fn_
|
14 |
|
15 |
+
torch_initialized = False
|
16 |
+
torch = None
|
17 |
+
_global_func_lookup = None
|
18 |
+
_Node = None
|
19 |
+
SingleSymPyModule = None
|
20 |
+
|
21 |
+
def _initialize_torch():
|
22 |
+
global torch_initialized
|
23 |
+
global torch
|
24 |
+
global _global_func_lookup
|
25 |
+
global _Node
|
26 |
+
global SingleSymPyModule
|
27 |
+
|
28 |
+
# Way to lazy load torch, only if this is called,
|
29 |
+
# but still allow this module to be loaded in __init__
|
30 |
+
if not torch_initialized:
|
31 |
+
import torch as _torch
|
32 |
+
torch = _torch
|
33 |
+
|
34 |
+
_global_func_lookup = {
|
35 |
+
sympy.Mul: _reduce(torch.mul),
|
36 |
+
sympy.Add: _reduce(torch.add),
|
37 |
+
sympy.div: torch.div,
|
38 |
+
sympy.Abs: torch.abs,
|
39 |
+
sympy.sign: torch.sign,
|
40 |
+
# Note: May raise error for ints.
|
41 |
+
sympy.ceiling: torch.ceil,
|
42 |
+
sympy.floor: torch.floor,
|
43 |
+
sympy.log: torch.log,
|
44 |
+
sympy.exp: torch.exp,
|
45 |
+
sympy.sqrt: torch.sqrt,
|
46 |
+
sympy.cos: torch.cos,
|
47 |
+
sympy.acos: torch.acos,
|
48 |
+
sympy.sin: torch.sin,
|
49 |
+
sympy.asin: torch.asin,
|
50 |
+
sympy.tan: torch.tan,
|
51 |
+
sympy.atan: torch.atan,
|
52 |
+
sympy.atan2: torch.atan2,
|
53 |
+
# Note: May give NaN for complex results.
|
54 |
+
sympy.cosh: torch.cosh,
|
55 |
+
sympy.acosh: torch.acosh,
|
56 |
+
sympy.sinh: torch.sinh,
|
57 |
+
sympy.asinh: torch.asinh,
|
58 |
+
sympy.tanh: torch.tanh,
|
59 |
+
sympy.atanh: torch.atanh,
|
60 |
+
sympy.Pow: torch.pow,
|
61 |
+
sympy.re: torch.real,
|
62 |
+
sympy.im: torch.imag,
|
63 |
+
sympy.arg: torch.angle,
|
64 |
+
# Note: May raise error for ints and complexes
|
65 |
+
sympy.erf: torch.erf,
|
66 |
+
sympy.loggamma: torch.lgamma,
|
67 |
+
sympy.Eq: torch.eq,
|
68 |
+
sympy.Ne: torch.ne,
|
69 |
+
sympy.StrictGreaterThan: torch.gt,
|
70 |
+
sympy.StrictLessThan: torch.lt,
|
71 |
+
sympy.LessThan: torch.le,
|
72 |
+
sympy.GreaterThan: torch.ge,
|
73 |
+
sympy.And: torch.logical_and,
|
74 |
+
sympy.Or: torch.logical_or,
|
75 |
+
sympy.Not: torch.logical_not,
|
76 |
+
sympy.Max: torch.max,
|
77 |
+
sympy.Min: torch.min,
|
78 |
+
# Matrices
|
79 |
+
sympy.MatAdd: torch.add,
|
80 |
+
sympy.HadamardProduct: torch.mul,
|
81 |
+
sympy.Trace: torch.trace,
|
82 |
+
# Note: May raise error for integer matrices.
|
83 |
+
sympy.Determinant: torch.det,
|
84 |
+
}
|
85 |
+
|
86 |
+
class _Node(torch.nn.Module):
|
87 |
+
def __init__(self, *, expr, _memodict, _func_lookup, **kwargs):
|
88 |
+
super().__init__(**kwargs)
|
89 |
+
|
90 |
+
self._sympy_func = expr.func
|
91 |
+
|
92 |
+
if issubclass(expr.func, sympy.Float):
|
93 |
+
self._value = torch.nn.Parameter(torch.tensor(float(expr)))
|
94 |
+
self._torch_func = lambda: self._value
|
95 |
+
self._args = ()
|
96 |
+
elif issubclass(expr.func, sympy.UnevaluatedExpr):
|
97 |
+
if len(expr.args) != 1 or not issubclass(expr.args[0].func, sympy.Float):
|
98 |
+
raise ValueError("UnevaluatedExpr should only be used to wrap floats.")
|
99 |
+
self.register_buffer('_value', torch.tensor(float(expr.args[0])))
|
100 |
+
self._torch_func = lambda: self._value
|
101 |
+
self._args = ()
|
102 |
+
elif issubclass(expr.func, sympy.Integer):
|
103 |
+
# Can get here if expr is one of the Integer special cases,
|
104 |
+
# e.g. NegativeOne
|
105 |
+
self._value = int(expr)
|
106 |
+
self._torch_func = lambda: self._value
|
107 |
+
self._args = ()
|
108 |
+
elif issubclass(expr.func, sympy.Symbol):
|
109 |
+
self._name = expr.name
|
110 |
+
self._torch_func = lambda value: value
|
111 |
+
self._args = ((lambda memodict: memodict[expr.name]),)
|
112 |
+
else:
|
113 |
+
self._torch_func = _func_lookup[expr.func]
|
114 |
+
args = []
|
115 |
+
for arg in expr.args:
|
116 |
+
try:
|
117 |
+
arg_ = _memodict[arg]
|
118 |
+
except KeyError:
|
119 |
+
arg_ = type(self)(expr=arg, _memodict=_memodict, _func_lookup=_func_lookup, **kwargs)
|
120 |
+
_memodict[arg] = arg_
|
121 |
+
args.append(arg_)
|
122 |
+
self._args = torch.nn.ModuleList(args)
|
123 |
+
|
124 |
+
def sympy(self, _memodict):
|
125 |
+
if issubclass(self._sympy_func, sympy.Float):
|
126 |
+
return self._sympy_func(self._value.item())
|
127 |
+
elif issubclass(self._sympy_func, sympy.UnevaluatedExpr):
|
128 |
+
return self._sympy_func(self._value.item())
|
129 |
+
elif issubclass(self._sympy_func, sympy.Integer):
|
130 |
+
return self._sympy_func(self._value)
|
131 |
+
elif issubclass(self._sympy_func, sympy.Symbol):
|
132 |
+
return self._sympy_func(self._name)
|
133 |
+
else:
|
134 |
+
if issubclass(self._sympy_func, (sympy.Min, sympy.Max)):
|
135 |
+
evaluate = False
|
136 |
+
else:
|
137 |
+
evaluate = True
|
138 |
+
args = []
|
139 |
+
for arg in self._args:
|
140 |
+
try:
|
141 |
+
arg_ = _memodict[arg]
|
142 |
+
except KeyError:
|
143 |
+
arg_ = arg.sympy(_memodict)
|
144 |
+
_memodict[arg] = arg_
|
145 |
+
args.append(arg_)
|
146 |
+
return self._sympy_func(*args, evaluate=evaluate)
|
147 |
+
|
148 |
+
def forward(self, memodict):
|
149 |
+
args = []
|
150 |
+
for arg in self._args:
|
151 |
+
try:
|
152 |
+
arg_ = memodict[arg]
|
153 |
+
except KeyError:
|
154 |
+
arg_ = arg(memodict)
|
155 |
+
memodict[arg] = arg_
|
156 |
+
args.append(arg_)
|
157 |
+
return self._torch_func(*args)
|
158 |
+
|
159 |
+
|
160 |
+
class SingleSymPyModule(torch.nn.Module):
|
161 |
+
def __init__(self, expression, symbols_in,
|
162 |
+
extra_funcs=None, **kwargs):
|
163 |
+
super().__init__(**kwargs)
|
164 |
+
|
165 |
+
if extra_funcs is None:
|
166 |
+
extra_funcs = {}
|
167 |
+
_func_lookup = co.ChainMap(_global_func_lookup, extra_funcs)
|
168 |
+
|
169 |
+
_memodict = {}
|
170 |
+
self._node = _Node(expr=expression, _memodict=_memodict, _func_lookup=_func_lookup)
|
171 |
+
self._expression_string = str(expression)
|
172 |
+
self.symbols_in = [str(symbol) for symbol in symbols_in]
|
173 |
+
|
174 |
+
def __repr__(self):
|
175 |
+
return f"{type(self).__name__}(expression={self._expression_string})"
|
176 |
+
|
177 |
+
def sympy(self):
|
178 |
+
_memodict = {}
|
179 |
+
return self._node.sympy(_memodict)
|
180 |
+
|
181 |
+
def forward(self, X):
|
182 |
+
symbols = {symbol: X[:, i]
|
183 |
+
for i, symbol in enumerate(self.symbols_in)}
|
184 |
+
return self._node(symbols)
|
185 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
|
187 |
def sympy2torch(expression, symbols_in):
|
188 |
+
global torch
|
189 |
+
global _Node
|
190 |
+
global SingleSymPyModule
|
191 |
+
|
192 |
+
_initialize_torch()
|
193 |
+
|
194 |
return SingleSymPyModule(expression, symbols_in)
|
test/test_jax.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import unittest
|
2 |
import numpy as np
|
3 |
-
from pysr import
|
4 |
from jax import numpy as jnp
|
5 |
from jax import random
|
6 |
from jax import grad
|
|
|
1 |
import unittest
|
2 |
import numpy as np
|
3 |
+
from pysr import sympy2jax
|
4 |
from jax import numpy as jnp
|
5 |
from jax import random
|
6 |
from jax import grad
|