import unittest import numpy as np from pysr import pysr, get_hof, best, best_tex, best_callable, best_row from pysr.sr import run_feature_selection, _handle_feature_selection import sympy from sympy import lambdify import pandas as pd class TestPipeline(unittest.TestCase): def setUp(self): self.default_test_kwargs = dict( niterations=10, populations=4, user_input=False, annealing=True, useFrequency=False, ) np.random.seed(0) self.X = np.random.randn(100, 5) def test_linear_relation(self): y = self.X[:, 0] equations = pysr(self.X, y, **self.default_test_kwargs) print(equations) self.assertLessEqual(equations.iloc[-1]['MSE'], 1e-4) def test_multioutput_custom_operator(self): y = self.X[:, [0, 1]]**2 equations = pysr(self.X, y, unary_operators=["sq(x) = x^2"], binary_operators=["plus"], extra_sympy_mappings={'sq': lambda x: x**2}, **self.default_test_kwargs, procs=0) print(equations) self.assertLessEqual(equations[0].iloc[-1]['MSE'], 1e-4) self.assertLessEqual(equations[1].iloc[-1]['MSE'], 1e-4) def test_multioutput_weighted_with_callable(self): y = self.X[:, [0, 1]]**2 w = np.random.rand(*y.shape) w[w < 0.5] = 0.0 w[w >= 0.5] = 1.0 # Double equation when weights are 0: y += (1-w) * y # Thus, pysr needs to use the weights to find the right equation! equations = pysr(self.X, y, weights=w, unary_operators=["sq(x) = x^2"], binary_operators=["plus"], extra_sympy_mappings={'sq': lambda x: x**2}, **self.default_test_kwargs, procs=0) np.testing.assert_almost_equal( best_callable()[0](self.X), self.X[:, 0]**2) np.testing.assert_almost_equal( best_callable()[1](self.X), self.X[:, 1]**2) def test_empty_operators_single_input(self): X = np.random.randn(100, 1) y = X[:, 0] + 3.0 equations = pysr(X, y, unary_operators=[], binary_operators=["plus"], **self.default_test_kwargs) self.assertLessEqual(equations.iloc[-1]['MSE'], 1e-4) class TestBest(unittest.TestCase): def setUp(self): equations = pd.DataFrame({ 'Equation': ['1.0', 'cos(x0)', 'square(cos(x0))'], 'MSE': [1.0, 0.1, 1e-5], 'Complexity': [1, 2, 3] }) equations['Complexity MSE Equation'.split(' ')].to_csv( 'equation_file.csv.bkup', sep='|') self.equations = get_hof( 'equation_file.csv', n_features=2, variables_names='x0 x1'.split(' '), extra_sympy_mappings={}, output_jax_format=False, multioutput=False, nout=1) def test_best(self): self.assertEqual(best(self.equations), sympy.cos(sympy.Symbol('x0'))**2) self.assertEqual(best(), sympy.cos(sympy.Symbol('x0'))**2) def test_best_tex(self): self.assertEqual(best_tex(self.equations), '\\cos^{2}{\\left(x_{0} \\right)}') self.assertEqual(best_tex(), '\\cos^{2}{\\left(x_{0} \\right)}') def test_best_lambda(self): X = np.random.randn(10, 2) y = np.cos(X[:, 0])**2 for f in [best_callable(), best_callable(self.equations)]: np.testing.assert_almost_equal(f(X), y) class TestFeatureSelection(unittest.TestCase): def test_feature_selection(self): np.random.seed(0) X = np.random.randn(20001, 5) y = X[:, 2]**2 + X[:, 3]**2 selected = run_feature_selection(X, y, select_k_features=2) self.assertEqual(sorted(selected), [2, 3]) def test_feature_selection_handler(self): np.random.seed(0) X = np.random.randn(20000, 5) y = X[:, 2]**2 + X[:, 3]**2 var_names = [f'x{i}' for i in range(5)] selected_X, selected_var_names, selection = _handle_feature_selection( X, select_k_features=2, use_custom_variable_names=True, variable_names=[f'x{i}' for i in range(5)], y=y) self.assertTrue((2 in selection) and (3 in selection)) self.assertEqual(set(selected_var_names), set('x2 x3'.split(' '))) np.testing.assert_array_equal( np.sort(selected_X, axis=1), np.sort(X[:, [2, 3]], axis=1) )