# Define allowed operators plus(x::Float64, y::Float64) = x+y mult(x::Float64, y::Float64) = x*y; # (Apparently using const for globals helps speed) const binops = [plus, mult] const unaops = [sin, cos, exp] const nvar = 5; const X = rand(100, nvar) # Here is the function we want to learn (x2^2 + cos(x3) + 5) const y = ((cx,)->cx^2).(X[:, 2]) + cos.(X[:, 3]) .+ 5.0; # How much to punish complexity const parsimony = 0.01 # How much to scale temperature by (T between 0 and 1) const alpha = 10.0 const maxsize = 20 id = (x,) -> x const nuna = size(unaops)[1] const nbin = size(binops)[1] const nops = nuna + nbin # Define a serialization format for the symbolic equations: mutable struct Node #Holds operators, variables, constants in a tree degree::Int #0 for constant/variable, 1 for cos/sin, 2 for +/* etc. val::Union{Float64, Int} #Either const value, or enumerates variable constant::Bool #false if variable op::Function #enumerates operator (for degree=1,2) l::Union{Node, Nothing} r::Union{Node, Nothing} Node(val::Float64) = new(0, val, true, id, nothing, nothing) Node(val::Int) = new(0, val, false, id, nothing, nothing) Node(op, l::Node) = new(1, 0.0, false, op, l, nothing) Node(op, l::Union{Float64, Int}) = new(1, 0.0, false, op, Node(l), nothing) Node(op, l::Node, r::Node) = new(2, 0.0, false, op, l, r) #Allow to pass the leaf value without additional node call: Node(op, l::Union{Float64, Int}, r::Node) = new(2, 0.0, false, op, Node(l), r) Node(op, l::Node, r::Union{Float64, Int}) = new(2, 0.0, false, op, l, Node(r)) Node(op, l::Union{Float64, Int}, r::Union{Float64, Int}) = new(2, 0.0, false, op, Node(l), Node(r)) end # Evaluate a symbolic equation: function evalTree(tree::Node, x::Array{Float64, 1}=Float64[])::Float64 if tree.degree == 0 if tree.constant return tree.val else return x[tree.val] end elseif tree.degree == 1 return tree.op(evalTree(tree.l, x)) else return tree.op(evalTree(tree.l, x), evalTree(tree.r, x)) end end # Count the operators, constants, variables in an equation function countNodes(tree::Node)::Int if tree.degree == 0 return 1 elseif tree.degree == 1 return 1 + countNodes(tree.l) else return 1 + countNodes(tree.l) + countNodes(tree.r) end end # Convert an equation to a string function stringTree(tree::Node)::String if tree.degree == 0 if tree.constant return string(tree.val) else return "x$(tree.val)" end elseif tree.degree == 1 return "$(tree.op)($(stringTree(tree.l)))" else return "$(tree.op)($(stringTree(tree.l)), $(stringTree(tree.r)))" end end # Print an equation function printTree(tree::Node) println(stringTree(tree)) end # Return a random node from the tree function randomNode(tree::Node)::Node if tree.degree == 0 return tree end a = countNodes(tree) b = 0 c = 0 if tree.degree >= 1 b = countNodes(tree.l) end if tree.degree == 2 c = countNodes(tree.r) end i = rand(1:1+b+c) if i <= b return randomNode(tree.l) elseif i == b + 1 return tree end return randomNode(tree.r) end # Count the number of unary operators in the equation function countUnaryOperators(tree::Node)::Int if tree.degree == 0 return 0 elseif tree.degree == 1 return 1 + countUnaryOperators(tree.l) else return 0 + countUnaryOperators(tree.l) + countUnaryOperators(tree.r) end end # Count the number of binary operators in the equation function countBinaryOperators(tree::Node)::Int if tree.degree == 0 return 0 elseif tree.degree == 1 return 0 + countBinaryOperators(tree.l) else return 1 + countBinaryOperators(tree.l) + countBinaryOperators(tree.r) end end # Count the number of operators in the equation function countOperators(tree::Node)::Int return countUnaryOperators(tree) + countBinaryOperators(tree) end # Randomly convert an operator into another one (binary->binary; # unary->unary) function mutateOperator(tree::Node)::Node if countOperators(tree) == 0 return tree end node = randomNode(tree) while node.degree == 0 node = randomNode(tree) end if node.degree == 1 node.op = unaops[rand(1:length(unaops))] else node.op = binops[rand(1:length(binops))] end return tree end # Count the number of constants in an equation function countConstants(tree::Node)::Int if tree.degree == 0 return convert(Int, tree.constant) elseif tree.degree == 1 return 0 + countConstants(tree.l) else return 0 + countConstants(tree.l) + countConstants(tree.r) end end # Randomly perturb a constant function mutateConstant( tree::Node, T::Float64, probNegate::Float64=0.01)::Node # T is between 0 and 1. if countConstants(tree) == 0 return tree end node = randomNode(tree) while node.degree != 0 || node.constant == false node = randomNode(tree) end bottom = 0.1 maxChange = T + 1.0 + bottom factor = maxChange^rand() makeConstBigger = rand() > 0.5 if makeConstBigger node.val *= factor else node.val /= factor end if rand() > probNegate node.val *= -1 end return tree end # Evaluate an equation over an array of datapoints function evalTreeArray( tree::Node, x::Array{Float64, 2})::Array{Float64, 1} return mapslices( (cx,) -> evalTree(tree, cx), x, dims=[2] )[:, 1] end # Sum of square error between two arrays function SSE(x::Array{Float64}, y::Array{Float64})::Float64 return sum(((cx,)->cx^2).(x - y)) end # Mean of square error between two arrays function MSE(x::Array{Float64}, y::Array{Float64})::Float64 return SSE(x, y)/size(x)[1] end # Score an equation function scoreFunc( tree::Node, X::Array{Float64, 2}, y::Array{Float64, 1}, parsimony::Float64=0.1)::Float64 return MSE(evalTreeArray(tree, X), y) + countNodes(tree)*parsimony end # Add a random unary/binary operation to the end of a tree function appendRandomOp(tree::Node)::Node node = randomNode(tree) while node.degree != 0 node = randomNode(tree) end choice = rand() makeNewBinOp = choice < nbin/nops if rand() > 0.5 left = randn() else left = rand(1:nvar) end if rand() > 0.5 right = randn() else right = rand(1:nvar) end if makeNewBinOp newnode = Node( binops[rand(1:length(binops))], left, right ) else newnode = Node( unaops[rand(1:length(unaops))], left ) end node.l = newnode.l node.r = newnode.r node.op = newnode.op node.degree = newnode.degree node.val = newnode.val node.constant = newnode.constant return tree end # Select a random node, and replace it an the subtree # with a variable or constant function deleteRandomOp(tree::Node)::Node node = randomNode(tree) # Can "delete" variable or constant too if rand() > 0.5 val = randn() else val = rand(1:nvar) end newnode = Node(val) node.l = newnode.l node.r = newnode.r node.op = newnode.op node.degree = newnode.degree node.val = newnode.val node.constant = newnode.constant return tree end # Go through one simulated annealing mutation cycle # exp(-delta/T) defines probability of accepting a change function iterate( tree::Node, T::Float64, X::Array{Float64, 2}, y::Array{Float64, 1}, alpha::Float64=1.0, mult::Float64=0.1 )::Node prev = deepcopy(tree) mutationChoice = rand() weights = [8, 1, 1, 1] weights /= sum(weights) cweights = cumsum(weights) n = countNodes(tree) if mutationChoice < cweights[1] tree = mutateConstant(tree, T) elseif mutationChoice < cweights[2] tree = mutateOperator(tree) elseif mutationChoice < cweights[3] && n < maxsize tree = appendRandomOp(tree) elseif mutationChoice < cweights[4] tree = deleteRandomOp(tree) end try beforeLoss = scoreFunc(prev, X, y, mult) afterLoss = scoreFunc(tree, X, y, mult) delta = afterLoss - beforeLoss probChange = exp(-delta/(T*alpha)) if probChange > rand() return tree end return prev catch error # Sometimes too many chained exp operators if isa(error, DomainError) return prev else throw(error) end end end # Create a random equation by appending random operators function genRandomTree(length::Int)::Node tree = Node(1.0) for i=1:length tree = appendRandomOp(tree) end return tree end # Define a member of population by equation, score, and age mutable struct PopMember tree::Node score::Float64 birth::Float64 PopMember(t) = new(t, scoreFunc(t, X, y, parsimony), time()-1.6e9) end # A list of members of the population, with easy constructors, # which allow for random generation of new populations mutable struct Population members::Array{PopMember, 1} n::Int Population(pop::Array{PopMember, 1}) = new(pop, size(pop)[1]) Population(npop::Int64) = new([PopMember(genRandomTree(3)) for i=1:npop], npop) Population(npop::Int64, nlength::Int64) = new([PopMember(genRandomTree(nlength)) for i=1:npop], npop) end # Sample 10 random members of the population, and make a new one function samplePop(pop::Population)::Population idx = rand(1:pop.n, 10) return Population(pop.members[idx])#Population(deepcopy(pop.members[idx])) end # Sample the population, and get the best member from that sample function bestOfSample(pop::Population)::PopMember sample = samplePop(pop) best_idx = argmin([sample.members[member].score for member=1:sample.n]) return sample.members[best_idx] end # Return best 10 examples function bestSubPop(pop::Population)::Population best_idx = sortperm([pop.members[member].score for member=1:pop.n]) return Population(pop.members[best_idx[1:10]]) end # Mutate the best sampled member of the population function iterateSample(pop::Population, T::Float64)::PopMember allstar = bestOfSample(pop) new = iterate(allstar.tree, T, X, y, alpha, parsimony) allstar.tree = new allstar.score = scoreFunc(new, X, y, parsimony) allstar.birth = time() - 1.6e9 return allstar end # Pass through the population several times, replacing the oldest # with the fittest of a small subsample function regEvolCycle(pop::Population, T::Float64)::Population for i=1:Int(pop.n/10) baby = iterateSample(pop, T) #printTree(baby.tree) oldest = argmin([pop.members[member].birth for member=1:pop.n]) pop.members[oldest] = baby end return pop end # Cycle through regularized evolution many times, # printing the fittest equation every 10% through function run( pop::Population, ncycles::Int, annealing::Bool=false, )::Population pop = deepcopy(pop) allT = LinRange(1.0, 0.0, ncycles) for iT in 1:size(allT)[1] if annealing pop = regEvolCycle(pop, allT[iT]) else pop = regEvolCycle(pop, 1.0) end end return pop end