# Define a serialization format for the symbolic equations: mutable struct Node #Holds operators, variables, constants in a tree degree::Integer #0 for constant/variable, 1 for cos/sin, 2 for +/* etc. val::Union{Float32, Integer} #Either const value, or enumerates variable constant::Bool #false if variable op::Integer #enumerates operator (separately for degree=1,2) l::Union{Node, Nothing} r::Union{Node, Nothing} Node(val::Float32) = new(0, val, true, 1, nothing, nothing) Node(val::Integer) = new(0, val, false, 1, nothing, nothing) Node(op::Integer, l::Node) = new(1, 0.0f0, false, op, l, nothing) Node(op::Integer, l::Union{Float32, Integer}) = new(1, 0.0f0, false, op, Node(l), nothing) Node(op::Integer, l::Node, r::Node) = new(2, 0.0f0, false, op, l, r) #Allow to pass the leaf value without additional node call: Node(op::Integer, l::Union{Float32, Integer}, r::Node) = new(2, 0.0f0, false, op, Node(l), r) Node(op::Integer, l::Node, r::Union{Float32, Integer}) = new(2, 0.0f0, false, op, l, Node(r)) Node(op::Integer, l::Union{Float32, Integer}, r::Union{Float32, Integer}) = new(2, 0.0f0, false, op, Node(l), Node(r)) end # Copy an equation (faster than deepcopy) function copyNode(tree::Node)::Node if tree.degree == 0 return Node(tree.val) elseif tree.degree == 1 return Node(tree.op, copyNode(tree.l)) else return Node(tree.op, copyNode(tree.l), copyNode(tree.r)) end end # Count the operators, constants, variables in an equation function countNodes(tree::Node)::Integer if tree.degree == 0 return 1 elseif tree.degree == 1 return 1 + countNodes(tree.l) else return 1 + countNodes(tree.l) + countNodes(tree.r) end end # Count the max depth of a tree function countDepth(tree::Node)::Integer if tree.degree == 0 return 1 elseif tree.degree == 1 return 1 + countDepth(tree.l) else return 1 + max(countDepth(tree.l), countDepth(tree.r)) end end # Convert an equation to a string function stringTree(tree::Node)::String if tree.degree == 0 if tree.constant return string(tree.val) else if useVarMap return varMap[tree.val] else return "x$(tree.val - 1)" end end elseif tree.degree == 1 return "$(unaops[tree.op])($(stringTree(tree.l)))" else return "$(binops[tree.op])($(stringTree(tree.l)), $(stringTree(tree.r)))" end end # Print an equation function printTree(tree::Node) println(stringTree(tree)) end # Return a random node from the tree function randomNode(tree::Node)::Node if tree.degree == 0 return tree end a = countNodes(tree) b = 0 c = 0 if tree.degree >= 1 b = countNodes(tree.l) end if tree.degree == 2 c = countNodes(tree.r) end i = rand(1:1+b+c) if i <= b return randomNode(tree.l) elseif i == b + 1 return tree end return randomNode(tree.r) end # Count the number of unary operators in the equation function countUnaryOperators(tree::Node)::Integer if tree.degree == 0 return 0 elseif tree.degree == 1 return 1 + countUnaryOperators(tree.l) else return 0 + countUnaryOperators(tree.l) + countUnaryOperators(tree.r) end end # Count the number of binary operators in the equation function countBinaryOperators(tree::Node)::Integer if tree.degree == 0 return 0 elseif tree.degree == 1 return 0 + countBinaryOperators(tree.l) else return 1 + countBinaryOperators(tree.l) + countBinaryOperators(tree.r) end end # Count the number of operators in the equation function countOperators(tree::Node)::Integer return countUnaryOperators(tree) + countBinaryOperators(tree) end # Count the number of constants in an equation function countConstants(tree::Node)::Integer if tree.degree == 0 return convert(Integer, tree.constant) elseif tree.degree == 1 return 0 + countConstants(tree.l) else return 0 + countConstants(tree.l) + countConstants(tree.r) end end