# Pass through the population several times, replacing the oldest # with the fittest of a small subsample function regEvolCycle(pop::Population, T::Float32, curmaxsize::Integer, frequencyComplexity::Array{Float32, 1})::Population # Batch over each subsample. Can give 15% improvement in speed; probably moreso for large pops. # but is ultimately a different algorithm than regularized evolution, and might not be # as good. if fast_cycle shuffle!(pop.members) n_evol_cycles = round(Integer, pop.n/ns) babies = Array{PopMember}(undef, n_evol_cycles) # Iterate each ns-member sub-sample @inbounds Threads.@threads for i=1:n_evol_cycles best_score = Inf32 best_idx = 1+(i-1)*ns # Calculate best member of the subsample: for sub_i=1+(i-1)*ns:i*ns if pop.members[sub_i].score < best_score best_score = pop.members[sub_i].score best_idx = sub_i end end allstar = pop.members[best_idx] babies[i] = iterate(allstar, T, curmaxsize, frequencyComplexity) end # Replace the n_evol_cycles-oldest members of each population @inbounds for i=1:n_evol_cycles oldest = argmin([pop.members[member].birth for member=1:pop.n]) pop.members[oldest] = babies[i] end else for i=1:round(Integer, pop.n/ns) allstar = bestOfSample(pop) baby = iterate(allstar, T, curmaxsize, frequencyComplexity) #printTree(baby.tree) oldest = argmin([pop.members[member].birth for member=1:pop.n]) pop.members[oldest] = baby end end return pop end