import numpy as np import csv import traceback from .sr import pysr, best from pathlib import Path PKG_DIR = Path(__file__).parents[1] FEYNMAN_DATASET = PKG_DIR / "datasets" / "FeynmanEquations.csv" class Problem: """ Problem API to work with PySR. Has attributes: X, y as pysr accepts, form which is a string representing the correct equation and variable_names Should be able to call pysr(problem.X, problem.y, var_names=problem.var_names) and have it work """ def __init__(self, X, y, form=None, variable_names=None): self.X = X self.y = y self.form = form self.variable_names = variable_names class FeynmanProblem(Problem): """ Stores the data for the problems from the 100 Feynman Equations on Physics. This is the benchmark used in the AI Feynman Paper """ def __init__(self, row, gen=False, dp=500): """ row: a row read as a dict from the FeynmanEquations dataset provided in the datasets folder of the repo gen: If true the problem will have dp X and y values randomly generated else they will be None """ self.eq_id = row['Filename'] self.n_vars = int(row['# variables']) super(FeynmanProblem, self).__init__(None, None, form=row['Formula'], variable_names=[row[f'v{i + 1}_name'] for i in range(self.n_vars)]) self.low = [float(row[f'v{i+1}_low']) for i in range(self.n_vars)] self.high = [float(row[f'v{i+1}_high']) for i in range(self.n_vars)] self.dp = dp if gen: self.X = np.random.uniform(0.01, 25, size=(self.dp, self.n_vars)) d = {} for var in range(len(self.variable_names)): d[self.variable_names[var]] = self.X[:, var] d['exp'] = np.exp d['sqrt'] = np.sqrt d['pi'] = np.pi d['cos'] = np.cos d['sin'] = np.sin d['tan'] = np.tan d['tanh'] = np.tanh d['ln'] = np.log d['log'] = np.log # Quite sure the Feynman dataset has no base 10 logs d['arcsin'] = np.arcsin self.y = eval(self.form,d) return def __str__(self): return f"Feynman Equation: {self.eq_id}|Form: {self.form}" def __repr__(self): return str(self) def mk_problems(first=100, gen=False, dp=500, data_dir=FEYNMAN_DATASET): """ first: the first "first" equations from the dataset will be made into problems data_dir: the path pointing to the Feynman Equations csv returns: list of FeynmanProblems """ ret = [] with open(data_dir) as csvfile: ind = 0 reader = csv.DictReader(csvfile) for i, row in enumerate(reader): if ind > first: break if row['Filename'] == '': continue try: p = FeynmanProblem(row, gen=gen, dp=dp) ret.append(p) except Exception as e: traceback.print_exc() print(f"FAILED ON ROW {i}") ind += 1 return ret def run_on_problem(problem, verbosity=0, multiprocessing=True): """ Takes in a problem and returns a tuple: (equations, best predicted equation, actual equation) """ from time import time starting = time() equations = pysr(problem.X, problem.y, variable_names=problem.variable_names, verbosity=verbosity,) timing = time()-starting others = {"time": timing, "problem": problem} if not multiprocessing: others['equations'] = equations return str(best(equations)), problem.form, others def do_feynman_experiments_parallel(first=100, verbosity=0, dp=500, output_file_path="FeynmanExperiment.csv", data_dir=FEYNMAN_DATASET): import multiprocessing as mp from tqdm import tqdm problems = FeynmanProblem.mk_problems(first=first, gen=True, dp=dp, data_dir=data_dir) ids = [] predictions = [] true_equations = [] time_takens = [] pool = mp.Pool() results = [] with tqdm(total=len(problems)) as pbar: for i, res in enumerate(pool.imap(run_on_problem, problems)): results.append(res) pbar.update() for res in results: prediction, true_equation, others = res problem = others['problem'] ids.append(problem.eq_id) predictions.append(prediction) true_equations.append(true_equation) time_takens.append(others['time']) with open(output_file_path, 'a') as f: writer = csv.writer(f, delimiter=',') writer.writerow(['ID', 'Predicted', 'True', 'Time']) for i in range(len(ids)): writer.writerow([ids[i], predictions[i], true_equations[i], time_takens[i]]) return def do_feynman_experiments(first=100, verbosity=0, dp=500, output_file_path="FeynmanExperiment.csv", data_dir=FEYNMAN_DATASET): from tqdm import tqdm problems = FeynmanProblem.mk_problems(first=first, gen=True, dp=dp, data_dir=data_dir) indx = range(len(problems)) ids = [] predictions = [] true_equations = [] time_takens = [] for problem in tqdm(problems): prediction, true_equation, others = run_on_problem(problem, verbosity) ids.append(problem.eq_id) predictions.append(prediction) true_equations.append(true_equation) time_takens.append(others['time']) with open(output_file_path, 'a') as f: writer = csv.writer(f, delimiter=',') writer.writerow(['ID', 'Predicted', 'True', 'Time']) for i in range(len(ids)): writer.writerow([ids[i], predictions[i], true_equations[i], time_takens[i]]) return