import numpy as np X = 2 * np.random.randn(100, 5) y = 2.5382 * np.cos(X[:, 3]) + X[:, 0] ** 2 - 0.5 from pysr import PySRRegressor model = PySRRegressor( niterations=40, binary_operators=["+", "*"], unary_operators=[ "cos", "exp", "sin", "inv(x) = 1/x", # Custom operator (julia syntax) ], model_selection="best", loss="loss(x, y) = (x - y)^2", # Custom loss function (julia syntax) ) model.fit(X, y) print(model)