import numpy as np from pysr import pysr, best # Dataset X = 2 * np.random.randn(100, 5) y = 2 * np.cos(X[:, 3]) + X[:, 0] ** 2 - 2 # Learn equations equations = pysr( X, y, niterations=5, binary_operators=["plus", "mult"], unary_operators=[ "cos", "exp", "sin", # Pre-defined library of operators (see https://pysr.readthedocs.io/en/latest/docs/operators/) "inv(x) = 1/x", ], loss="loss(x, y) = abs(x - y)", # Custom loss function julia_project="../SymbolicRegression.jl", ) # Define your own operator! (Julia syntax) ... # (you can use ctl-c to exit early) print(best(equations))