import unittest import numpy as np import pandas as pd from pysr import sympy2torch, get_hof import torch import sympy class TestTorch(unittest.TestCase): def test_sympy2torch(self): x, y, z = sympy.symbols('x y z') cosx = 1.0 * sympy.cos(x) + y X = torch.randn((1000, 3)) true = 1.0 * torch.cos(X[:, 0]) + X[:, 1] torch_module = sympy2torch(cosx, [x, y, z]) self.assertTrue( np.all(np.isclose(torch_module(X).detach().numpy(), true.detach().numpy())) ) def test_pipeline(self): X = np.random.randn(100, 10) equations = pd.DataFrame({ 'Equation': ['1.0', 'cos(x0)', 'square(cos(x0))'], 'MSE': [1.0, 0.1, 1e-5], 'Complexity': [1, 2, 3] }) equations['Complexity MSE Equation'.split(' ')].to_csv( 'equation_file.csv.bkup', sep='|') equations = get_hof( 'equation_file.csv', n_features=2, variables_names='x1 x2 x3'.split(' '), extra_sympy_mappings={}, output_torch_format=True, multioutput=False, nout=1, selection=[1, 2, 3]) tformat = equations.iloc[-1].torch_format np.testing.assert_almost_equal( tformat(torch.tensor(X)).detach().numpy(), np.square(np.cos(X[:, 1])) #Selection 1st feature )