"""Start a hyperoptimization from a single node""" import sys import numpy as np import pickle as pkl import hyperopt from hyperopt import hp, fmin, tpe, Trials import pysr import time import contextlib @contextlib.contextmanager def temp_seed(seed): state = np.random.get_state() np.random.seed(seed) try: yield finally: np.random.set_state(state) # Change the following code to your file ################################################################################ TRIALS_FOLDER = "trials" NUMBER_TRIALS_PER_RUN = 1 def run_trial(args): """Evaluate the model loss using the hyperparams in args :args: A dictionary containing all hyperparameters :returns: Dict with status and loss from cross-validation """ print("Running on", args) args["niterations"] = 100 args["npop"] = 100 args["ncyclesperiteration"] = 1000 args["topn"] = 10 args["parsimony"] = 0.0 args["useFrequency"] = True args["annealing"] = True if args["npop"] < 20 or args["ncyclesperiteration"] < 3: print("Bad parameters") return {"status": "ok", "loss": np.inf} args["weightDoNothing"] = 1.0 ntrials = 3 with temp_seed(0): X = np.random.randn(100, 10) * 3 eval_str = [ "np.sign(X[:, 2])*np.abs(X[:, 2])**2.5 + 5*np.cos(X[:, 3]) - 5", "np.exp(X[:, 0]/2) + 12.0 + np.log(np.abs(X[:, 0])*10 + 1)", "(np.exp(X[:, 3]) + 3)/(np.abs(X[:, 1]) + np.cos(X[:, 0]) + 1.1)", "X[:, 0] * np.sin(2*np.pi * (X[:, 1] * X[:, 2] - X[:, 3] / X[:, 4])) + 3.0", ] print("Starting", str(args)) try: local_trials = [] for i in range(len(eval_str)): print(f"Starting test {i}") for j in range(ntrials): print(f"Starting trial {j}") y = eval(eval_str[i]) trial = pysr.pysr( X, y, procs=4, populations=20, binary_operators=["plus", "mult", "pow", "div"], unary_operators=["cos", "exp", "sin", "logm", "abs"], maxsize=25, constraints={"pow": (-1, 1)}, **args, ) if len(trial) == 0: raise ValueError local_trials.append( np.min(trial["MSE"]) ** 0.5 / np.std(eval(eval_str[i - 1])) ) print(f"Test {i} trial {j} with", str(args), f"got {local_trials[-1]}") except ValueError: print("Broken", str(args)) return {"status": "ok", "loss": np.inf} # or 'fail' if nan loss loss = np.average(local_trials) print(f"Finished with {loss}", str(args)) return {"status": "ok", "loss": loss} # or 'fail' if nan loss space = { "alpha": hp.lognormal("alpha", np.log(10.0), 1.0), "fractionReplacedHof": hp.lognormal("fractionReplacedHof", np.log(0.1), 1.0), "fractionReplaced": hp.lognormal("fractionReplaced", np.log(0.1), 1.0), "perturbationFactor": hp.lognormal("perturbationFactor", np.log(1.0), 1.0), "weightMutateConstant": hp.lognormal("weightMutateConstant", np.log(4.0), 1.0), "weightMutateOperator": hp.lognormal("weightMutateOperator", np.log(0.5), 1.0), "weightAddNode": hp.lognormal("weightAddNode", np.log(0.5), 1.0), "weightInsertNode": hp.lognormal("weightInsertNode", np.log(0.5), 1.0), "weightDeleteNode": hp.lognormal("weightDeleteNode", np.log(0.5), 1.0), "weightSimplify": hp.lognormal("weightSimplify", np.log(0.05), 1.0), "weightRandomize": hp.lognormal("weightRandomize", np.log(0.25), 1.0), } ################################################################################ def merge_trials(trials1, trials2_slice): """Merge two hyperopt trials objects :trials1: The primary trials object :trials2_slice: A slice of the trials object to be merged, obtained with, e.g., trials2.trials[:10] :returns: The merged trials object """ max_tid = 0 if len(trials1.trials) > 0: max_tid = max([trial["tid"] for trial in trials1.trials]) for trial in trials2_slice: tid = trial["tid"] + max_tid + 1 local_hyperopt_trial = Trials().new_trial_docs( tids=[None], specs=[None], results=[None], miscs=[None] ) local_hyperopt_trial[0] = trial local_hyperopt_trial[0]["tid"] = tid local_hyperopt_trial[0]["misc"]["tid"] = tid for key in local_hyperopt_trial[0]["misc"]["idxs"].keys(): local_hyperopt_trial[0]["misc"]["idxs"][key] = [tid] trials1.insert_trial_docs(local_hyperopt_trial) trials1.refresh() return trials1 loaded_fnames = [] trials = None # Run new hyperparameter trials until killed while True: np.random.seed() # Load up all runs: import glob path = TRIALS_FOLDER + "/*.pkl" for fname in glob.glob(path): if fname in loaded_fnames: continue trials_obj = pkl.load(open(fname, "rb")) n_trials = trials_obj["n"] trials_obj = trials_obj["trials"] if len(loaded_fnames) == 0: trials = trials_obj else: print("Merging trials") trials = merge_trials(trials, trials_obj.trials[-n_trials:]) loaded_fnames.append(fname) print("Loaded trials", len(loaded_fnames)) if len(loaded_fnames) == 0: trials = Trials() n = NUMBER_TRIALS_PER_RUN try: best = fmin( run_trial, space=space, algo=tpe.suggest, max_evals=n + len(trials.trials), trials=trials, verbose=1, rstate=np.random.RandomState(np.random.randint(1, 10**6)), ) except hyperopt.exceptions.AllTrialsFailed: continue print("current best", best) hyperopt_trial = Trials() # Merge with empty trials dataset: save_trials = merge_trials(hyperopt_trial, trials.trials[-n:]) new_fname = ( TRIALS_FOLDER + "/" + str(np.random.randint(0, sys.maxsize)) + str(time.time()) + ".pkl" ) pkl.dump({"trials": save_trials, "n": n}, open(new_fname, "wb")) loaded_fnames.append(new_fname)