# Getting Started ## Installation PySR uses both Julia and Python, so you need to have both installed. Install Julia - see [downloads](https://julialang.org/downloads/), and then instructions for [mac](https://julialang.org/downloads/platform/#macos) and [linux](https://julialang.org/downloads/platform/#linux_and_freebsd). (Don't use the `conda-forge` version; it doesn't seem to work properly.) Then, at the command line, install the `Optim` and `SpecialFunctions` packages via: ```bash julia -e 'import Pkg; Pkg.add("Optim"); Pkg.add("SpecialFunctions")' ``` For python, you need to have Python 3, numpy, sympy, and pandas installed. You can install this package from PyPI with: ```bash pip install pysr ``` ## Quickstart ```python import numpy as np from pysr import pysr # Dataset X = 2*np.random.randn(100, 5) y = 2*np.cos(X[:, 3]) + X[:, 0]**2 - 2 # Learn equations equations = pysr(X, y, niterations=5, binary_operators=["plus", "mult"], unary_operators=["cos", "exp", "sin"]) ... print(equations) ``` which gives: ``` Complexity MSE Equation 0 5 1.947431 plus(-1.7420927, mult(x0, x0)) 1 8 0.486858 plus(-1.8710494, plus(cos(x3), mult(x0, x0))) 2 11 0.000000 plus(plus(mult(x0, x0), cos(x3)), plus(-2.0, cos(x3))) ``` The newest version of PySR also returns three additional columns: - `score` - a metric akin to Occam's razor; you should use this to help select the "true" equation. - `sympy_format` - sympy equation. - `lambda_format` - a lambda function for that equation, that you can pass values through.