# Cycle through regularized evolution many times, # printing the fittest equation every 10% through function run( pop::Population, ncycles::Integer, curmaxsize::Integer, frequencyComplexity::Array{Float32, 1}; verbosity::Integer=0 )::Population allT = LinRange(1.0f0, 0.0f0, ncycles) for iT in 1:size(allT)[1] if annealing pop = regEvolCycle(pop, allT[iT], curmaxsize, frequencyComplexity) else pop = regEvolCycle(pop, 1.0f0, curmaxsize, frequencyComplexity) end if verbosity > 0 && (iT % verbosity == 0) bestPops = bestSubPop(pop) bestCurScoreIdx = argmin([bestPops.members[member].score for member=1:bestPops.n]) bestCurScore = bestPops.members[bestCurScoreIdx].score debug(verbosity, bestCurScore, " is the score for ", stringTree(bestPops.members[bestCurScoreIdx].tree)) end end return pop end