import unittest import numpy as np import pandas as pd from pysr import sympy2torch, get_hof, PySRRegressor import torch import sympy class TestTorch(unittest.TestCase): def setUp(self): np.random.seed(0) def test_sympy2torch(self): x, y, z = sympy.symbols("x y z") cosx = 1.0 * sympy.cos(x) + y X = torch.tensor(np.random.randn(1000, 3)) true = 1.0 * torch.cos(X[:, 0]) + X[:, 1] torch_module = sympy2torch(cosx, [x, y, z]) self.assertTrue( np.all(np.isclose(torch_module(X).detach().numpy(), true.detach().numpy())) ) def test_pipeline(self): X = np.random.randn(100, 10) equations = pd.DataFrame( { "Equation": ["1.0", "cos(x0)", "square(cos(x0))"], "MSE": [1.0, 0.1, 1e-5], "Complexity": [1, 2, 3], } ) equations["Complexity MSE Equation".split(" ")].to_csv( "equation_file.csv.bkup", sep="|" ) equations = get_hof( "equation_file.csv", n_features=2, # TODO: Why is this 2 and not 3? variables_names="x1 x2 x3".split(" "), extra_sympy_mappings={}, output_torch_format=True, multioutput=False, nout=1, selection=[1, 2, 3], ) tformat = equations.iloc[-1].torch_format np.testing.assert_almost_equal( tformat(torch.tensor(X)).detach().numpy(), np.square(np.cos(X[:, 1])), # Selection 1st feature decimal=4, ) def test_mod_mapping(self): x, y, z = sympy.symbols("x y z") expression = x ** 2 + sympy.atanh(sympy.Mod(y + 1, 2) - 1) * 3.2 * z module = sympy2torch(expression, [x, y, z]) X = torch.rand(100, 3).float() * 10 true_out = ( X[:, 0] ** 2 + torch.atanh(torch.fmod(X[:, 1] + 1, 2) - 1) * 3.2 * X[:, 2] ) torch_out = module(X) np.testing.assert_array_almost_equal( true_out.detach(), torch_out.detach(), decimal=4 ) def test_custom_operator(self): X = np.random.randn(100, 3) equations = pd.DataFrame( { "Equation": ["1.0", "mycustomoperator(x0)"], "MSE": [1.0, 0.1], "Complexity": [1, 2], } ) equations["Complexity MSE Equation".split(" ")].to_csv( "equation_file_custom_operator.csv.bkup", sep="|" ) get_hof( "equation_file_custom_operator.csv", n_features=3, variables_names="x1 x2 x3".split(" "), extra_sympy_mappings={"mycustomoperator": sympy.sin}, extra_torch_mappings={"mycustomoperator": torch.sin}, output_torch_format=True, multioutput=False, nout=1, selection=[0, 1, 2], ) model = PySRRegressor() # Will automatically use the set global state from get_hof. tformat = model.pytorch() np.testing.assert_almost_equal( tformat(torch.tensor(X)).detach().numpy(), np.sin(X[:, 0]), # Selection 1st feature decimal=4, )