import os import traceback import inspect import unittest import numpy as np from sklearn import model_selection from pysr import PySRRegressor, load from pysr.sr import run_feature_selection, _handle_feature_selection from sklearn.utils.estimator_checks import check_estimator import sympy import pandas as pd import warnings import pickle as pkl import tempfile from pathlib import Path DEFAULT_PARAMS = inspect.signature(PySRRegressor.__init__).parameters DEFAULT_NITERATIONS = DEFAULT_PARAMS["niterations"].default DEFAULT_POPULATIONS = DEFAULT_PARAMS["populations"].default DEFAULT_NCYCLES = DEFAULT_PARAMS["ncyclesperiteration"].default class TestPipeline(unittest.TestCase): def setUp(self): # Using inspect, # get default niterations from PySRRegressor, and double them: self.default_test_kwargs = dict( progress=False, model_selection="accuracy", niterations=DEFAULT_NITERATIONS * 2, populations=DEFAULT_POPULATIONS * 2, temp_equation_file=True, ) self.rstate = np.random.RandomState(0) self.X = self.rstate.randn(100, 5) def test_linear_relation(self): y = self.X[:, 0] model = PySRRegressor( **self.default_test_kwargs, early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 1", ) model.fit(self.X, y) print(model.equations_) self.assertLessEqual(model.get_best()["loss"], 1e-4) def test_linear_relation_named(self): y = self.X[:, 0] model = PySRRegressor( **self.default_test_kwargs, early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 1", ) model.fit(self.X, y, variable_names=["c1", "c2", "c3", "c4", "c5"]) self.assertIn("c1", model.equations_.iloc[-1]["equation"]) def test_linear_relation_weighted(self): y = self.X[:, 0] weights = np.ones_like(y) model = PySRRegressor( **self.default_test_kwargs, early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 1", ) model.fit(self.X, y, weights=weights) print(model.equations_) self.assertLessEqual(model.get_best()["loss"], 1e-4) def test_multiprocessing(self): y = self.X[:, 0] model = PySRRegressor( **self.default_test_kwargs, procs=2, multithreading=False, early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 1", ) model.fit(self.X, y) print(model.equations_) self.assertLessEqual(model.equations_.iloc[-1]["loss"], 1e-4) def test_multioutput_custom_operator_quiet_custom_complexity(self): y = self.X[:, [0, 1]] ** 2 model = PySRRegressor( unary_operators=["square_op(x) = x^2"], extra_sympy_mappings={"square_op": lambda x: x**2}, complexity_of_operators={"square_op": 2, "plus": 1}, binary_operators=["plus"], verbosity=0, **self.default_test_kwargs, procs=0, # Test custom operators with constraints: nested_constraints={"square_op": {"square_op": 3}}, constraints={"square_op": 10}, early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 3", ) model.fit(self.X, y) equations = model.equations_ print(equations) self.assertIn("square_op", model.equations_[0].iloc[-1]["equation"]) self.assertLessEqual(equations[0].iloc[-1]["loss"], 1e-4) self.assertLessEqual(equations[1].iloc[-1]["loss"], 1e-4) test_y1 = model.predict(self.X) test_y2 = model.predict(self.X, index=[-1, -1]) mse1 = np.average((test_y1 - y) ** 2) mse2 = np.average((test_y2 - y) ** 2) self.assertLessEqual(mse1, 1e-4) self.assertLessEqual(mse2, 1e-4) bad_y = model.predict(self.X, index=[0, 0]) bad_mse = np.average((bad_y - y) ** 2) self.assertGreater(bad_mse, 1e-4) def test_multioutput_weighted_with_callable_temp_equation(self): X = self.X.copy() y = X[:, [0, 1]] ** 2 w = self.rstate.rand(*y.shape) w[w < 0.5] = 0.0 w[w >= 0.5] = 1.0 # Double equation when weights are 0: y = (2 - w) * y # Thus, pysr needs to use the weights to find the right equation! model = PySRRegressor( unary_operators=["sq(x) = x^2"], binary_operators=["plus"], extra_sympy_mappings={"sq": lambda x: x**2}, **self.default_test_kwargs, procs=0, delete_tempfiles=False, early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 2", ) model.fit(X.copy(), y, weights=w) # These tests are flaky, so don't fail test: try: np.testing.assert_almost_equal( model.predict(X.copy())[:, 0], X[:, 0] ** 2, decimal=4 ) except AssertionError: print("Error in test_multioutput_weighted_with_callable_temp_equation") print("Model equations: ", model.sympy()[0]) print("True equation: x0^2") try: np.testing.assert_almost_equal( model.predict(X.copy())[:, 1], X[:, 1] ** 2, decimal=4 ) except AssertionError: print("Error in test_multioutput_weighted_with_callable_temp_equation") print("Model equations: ", model.sympy()[1]) print("True equation: x1^2") def test_empty_operators_single_input_warm_start(self): X = self.rstate.randn(100, 1) y = X[:, 0] + 3.0 regressor = PySRRegressor( unary_operators=[], binary_operators=["plus"], **self.default_test_kwargs, early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 3", ) self.assertTrue("None" in regressor.__repr__()) regressor.fit(X, y) self.assertTrue("None" not in regressor.__repr__()) self.assertTrue(">>>>" in regressor.__repr__()) self.assertLessEqual(regressor.equations_.iloc[-1]["loss"], 1e-4) np.testing.assert_almost_equal(regressor.predict(X), y, decimal=1) # Test if repeated fit works: regressor.set_params( niterations=1, ncyclesperiteration=2, warm_start=True, early_stop_condition=None, ) # This should exit almost immediately, and use the old equations regressor.fit(X, y) self.assertLessEqual(regressor.equations_.iloc[-1]["loss"], 1e-4) np.testing.assert_almost_equal(regressor.predict(X), y, decimal=1) # Tweak model selection: regressor.set_params(model_selection="best") self.assertEqual(regressor.get_params()["model_selection"], "best") self.assertTrue("None" not in regressor.__repr__()) self.assertTrue(">>>>" in regressor.__repr__()) def test_warm_start_set_at_init(self): # Smoke test for bug where warm_start=True is set at init y = self.X[:, 0] regressor = PySRRegressor(warm_start=True, max_evals=10) regressor.fit(self.X, y) def test_noisy(self): y = self.X[:, [0, 1]] ** 2 + self.rstate.randn(self.X.shape[0], 1) * 0.05 model = PySRRegressor( # Test that passing a single operator works: unary_operators="sq(x) = x^2", binary_operators="plus", extra_sympy_mappings={"sq": lambda x: x**2}, **self.default_test_kwargs, procs=0, denoise=True, early_stop_condition="stop_if(loss, complexity) = loss < 0.05 && complexity == 2", ) # We expect in this case that the "best" # equation should be the right one: model.set_params(model_selection="best") # Also try without a temp equation file: model.set_params(temp_equation_file=False) model.fit(self.X, y) self.assertLessEqual(model.get_best()[1]["loss"], 1e-2) self.assertLessEqual(model.get_best()[1]["loss"], 1e-2) def test_pandas_resample_with_nested_constraints(self): X = pd.DataFrame( { "T": self.rstate.randn(500), "x": self.rstate.randn(500), "unused_feature": self.rstate.randn(500), } ) true_fn = lambda x: np.array(x["T"] + x["x"] ** 2 + 1.323837) y = true_fn(X) noise = self.rstate.randn(500) * 0.01 y = y + noise # We also test y as a pandas array: y = pd.Series(y) # Resampled array is a different order of features: Xresampled = pd.DataFrame( { "unused_feature": self.rstate.randn(100), "x": self.rstate.randn(100), "T": self.rstate.randn(100), } ) model = PySRRegressor( unary_operators=[], binary_operators=["+", "*", "/", "-"], **self.default_test_kwargs, denoise=True, nested_constraints={"/": {"+": 1, "-": 1}, "+": {"*": 4}}, early_stop_condition="stop_if(loss, complexity) = loss < 1e-3 && complexity == 7", ) model.fit(X, y, Xresampled=Xresampled) self.assertNotIn("unused_feature", model.latex()) self.assertIn("T", model.latex()) self.assertIn("x", model.latex()) self.assertLessEqual(model.get_best()["loss"], 1e-1) fn = model.get_best()["lambda_format"] X2 = pd.DataFrame( { "T": self.rstate.randn(100), "unused_feature": self.rstate.randn(100), "x": self.rstate.randn(100), } ) self.assertLess(np.average((fn(X2) - true_fn(X2)) ** 2), 1e-1) self.assertLess(np.average((model.predict(X2) - true_fn(X2)) ** 2), 1e-1) def test_high_dim_selection_early_stop(self): X = pd.DataFrame({f"k{i}": self.rstate.randn(10000) for i in range(10)}) Xresampled = pd.DataFrame({f"k{i}": self.rstate.randn(100) for i in range(10)}) y = X["k7"] ** 2 + np.cos(X["k9"]) * 3 model = PySRRegressor( unary_operators=["cos"], select_k_features=3, early_stop_condition=1e-4, # Stop once most accurate equation is <1e-4 MSE maxsize=12, **self.default_test_kwargs, ) model.set_params(model_selection="accuracy") model.fit(X, y, Xresampled=Xresampled) self.assertLess(np.average((model.predict(X) - y) ** 2), 1e-4) # Again, but with numpy arrays: model.fit(X.values, y.values, Xresampled=Xresampled.values) self.assertLess(np.average((model.predict(X.values) - y.values) ** 2), 1e-4) def test_load_model(self): """See if we can load a ran model from the equation file.""" csv_file_data = """ Complexity|MSE|Equation 1|0.19951081|1.9762075 3|0.12717344|(f0 + 1.4724599) 4|0.104823045|pow_abs(2.2683423, cos(f3))""" # Strip the indents: csv_file_data = "\n".join([l.strip() for l in csv_file_data.split("\n")]) for from_backup in [False, True]: rand_dir = Path(tempfile.mkdtemp()) equation_filename = str(rand_dir / "equation.csv") with open(equation_filename + (".bkup" if from_backup else ""), "w") as f: f.write(csv_file_data) model = load( equation_filename, n_features_in=5, feature_names_in=["f0", "f1", "f2", "f3", "f4"], binary_operators=["+", "*", "/", "-", "^"], unary_operators=["cos"], ) X = self.rstate.rand(100, 5) y_truth = 2.2683423 ** np.cos(X[:, 3]) y_test = model.predict(X, 2) np.testing.assert_allclose(y_truth, y_test) def test_load_model_simple(self): # Test that we can simply load a model from its equation file. y = self.X[:, [0, 1]] ** 2 model = PySRRegressor( # Test that passing a single operator works: unary_operators="sq(x) = x^2", binary_operators="plus", extra_sympy_mappings={"sq": lambda x: x**2}, **self.default_test_kwargs, procs=0, denoise=True, early_stop_condition="stop_if(loss, complexity) = loss < 0.05 && complexity == 2", ) rand_dir = Path(tempfile.mkdtemp()) equation_file = rand_dir / "equations.csv" model.set_params(temp_equation_file=False) model.set_params(equation_file=equation_file) model.fit(self.X, y) # lambda functions are removed from the pickling, so we need # to pass it during the loading: model2 = load( model.equation_file_, extra_sympy_mappings={"sq": lambda x: x**2} ) np.testing.assert_allclose(model.predict(self.X), model2.predict(self.X)) # Try again, but using only the pickle file: for file_to_delete in [str(equation_file), str(equation_file) + ".bkup"]: if os.path.exists(file_to_delete): os.remove(file_to_delete) model3 = load( model.equation_file_, extra_sympy_mappings={"sq": lambda x: x**2} ) np.testing.assert_allclose(model.predict(self.X), model3.predict(self.X)) class TestBest(unittest.TestCase): def setUp(self): self.rstate = np.random.RandomState(0) self.X = self.rstate.randn(10, 2) self.y = np.cos(self.X[:, 0]) ** 2 self.model = PySRRegressor( progress=False, niterations=1, extra_sympy_mappings={}, output_jax_format=False, model_selection="accuracy", equation_file="equation_file.csv", ) equations = pd.DataFrame( { "equation": ["1.0", "cos(x0)", "square(cos(x0))"], "loss": [1.0, 0.1, 1e-5], "complexity": [1, 2, 3], } ) # Set up internal parameters as if it had been fitted: self.model.equation_file_ = "equation_file.csv" self.model.nout_ = 1 self.model.selection_mask_ = None self.model.feature_names_in_ = np.array(["x0", "x1"], dtype=object) equations["complexity loss equation".split(" ")].to_csv( "equation_file.csv.bkup", sep="|" ) self.model.refresh() self.equations_ = self.model.equations_ def test_best(self): self.assertEqual(self.model.sympy(), sympy.cos(sympy.Symbol("x0")) ** 2) def test_index_selection(self): self.assertEqual(self.model.sympy(-1), sympy.cos(sympy.Symbol("x0")) ** 2) self.assertEqual(self.model.sympy(2), sympy.cos(sympy.Symbol("x0")) ** 2) self.assertEqual(self.model.sympy(1), sympy.cos(sympy.Symbol("x0"))) self.assertEqual(self.model.sympy(0), 1.0) def test_best_tex(self): self.assertEqual(self.model.latex(), "\\cos^{2}{\\left(x_{0} \\right)}") def test_best_lambda(self): X = self.X y = self.y for f in [self.model.predict, self.equations_.iloc[-1]["lambda_format"]]: np.testing.assert_almost_equal(f(X), y, decimal=4) class TestFeatureSelection(unittest.TestCase): def setUp(self): self.rstate = np.random.RandomState(0) def test_feature_selection(self): X = self.rstate.randn(20000, 5) y = X[:, 2] ** 2 + X[:, 3] ** 2 selected = run_feature_selection(X, y, select_k_features=2) self.assertEqual(sorted(selected), [2, 3]) def test_feature_selection_handler(self): X = self.rstate.randn(20000, 5) y = X[:, 2] ** 2 + X[:, 3] ** 2 var_names = [f"x{i}" for i in range(5)] selected_X, selection = _handle_feature_selection( X, select_k_features=2, variable_names=var_names, y=y, ) self.assertTrue((2 in selection) and (3 in selection)) selected_var_names = [var_names[i] for i in selection] self.assertEqual(set(selected_var_names), set("x2 x3".split(" "))) np.testing.assert_array_equal( np.sort(selected_X, axis=1), np.sort(X[:, [2, 3]], axis=1) ) class TestMiscellaneous(unittest.TestCase): """Test miscellaneous functions.""" def test_deprecation(self): """Ensure that deprecation works as expected. This should give a warning, and sets the correct value. """ with self.assertWarns(FutureWarning): model = PySRRegressor(fractionReplaced=0.2) # This is a deprecated parameter, so we should get a warning. # The correct value should be set: self.assertEqual(model.fraction_replaced, 0.2) def test_size_warning(self): """Ensure that a warning is given for a large input size.""" model = PySRRegressor() X = np.random.randn(10001, 2) y = np.random.randn(10001) with warnings.catch_warnings(): warnings.simplefilter("error") with self.assertRaises(Exception) as context: model.fit(X, y) self.assertIn("more than 10,000", str(context.exception)) def test_feature_warning(self): """Ensure that a warning is given for large number of features.""" model = PySRRegressor() X = np.random.randn(100, 10) y = np.random.randn(100) with warnings.catch_warnings(): warnings.simplefilter("error") with self.assertRaises(Exception) as context: model.fit(X, y) self.assertIn("with 10 features or more", str(context.exception)) def test_deterministic_warnings(self): """Ensure that warnings are given for determinism""" model = PySRRegressor(random_state=0) X = np.random.randn(100, 2) y = np.random.randn(100) with warnings.catch_warnings(): warnings.simplefilter("error") with self.assertRaises(Exception) as context: model.fit(X, y) self.assertIn("`deterministic`", str(context.exception)) def test_deterministic_errors(self): """Setting deterministic without random_state should error""" model = PySRRegressor(deterministic=True) X = np.random.randn(100, 2) y = np.random.randn(100) with self.assertRaises(ValueError): model.fit(X, y) def test_pickle_with_temp_equation_file(self): """If we have a temporary equation file, unpickle the estimator.""" model = PySRRegressor( populations=int(1 + DEFAULT_POPULATIONS / 5), temp_equation_file=True, procs=0, multithreading=False, ) nout = 3 X = np.random.randn(100, 2) y = np.random.randn(100, nout) model.fit(X, y) contents = model.equation_file_contents_.copy() y_predictions = model.predict(X) equation_file_base = model.equation_file_ for i in range(1, nout + 1): assert not os.path.exists(str(equation_file_base) + f".out{i}.bkup") with tempfile.NamedTemporaryFile() as pickle_file: pkl.dump(model, pickle_file) pickle_file.seek(0) model2 = pkl.load(pickle_file) contents2 = model2.equation_file_contents_ cols_to_check = ["equation", "loss", "complexity"] for frame1, frame2 in zip(contents, contents2): pd.testing.assert_frame_equal(frame1[cols_to_check], frame2[cols_to_check]) y_predictions2 = model2.predict(X) np.testing.assert_array_equal(y_predictions, y_predictions2) def test_scikit_learn_compatibility(self): """Test PySRRegressor compatibility with scikit-learn.""" model = PySRRegressor( niterations=int(1 + DEFAULT_NITERATIONS / 10), populations=int(1 + DEFAULT_POPULATIONS / 3), ncyclesperiteration=int(2 + DEFAULT_NCYCLES / 10), verbosity=0, progress=False, random_state=0, deterministic=True, # Deterministic as tests require this. procs=0, multithreading=False, warm_start=False, temp_equation_file=True, ) # Return early. check_generator = check_estimator(model, generate_only=True) exception_messages = [] for (_, check) in check_generator: try: with warnings.catch_warnings(): warnings.simplefilter("ignore") check(model) print("Passed", check.func.__name__) except Exception: error_message = str(traceback.format_exc()) exception_messages.append( f"{check.func.__name__}:\n" + error_message + "\n" ) print("Failed", check.func.__name__, "with:") # Add a leading tab to error message, which # might be multi-line: print("\n".join([(" " * 4) + row for row in error_message.split("\n")])) # If any checks failed don't let the test pass. self.assertEqual(len(exception_messages), 0)