{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Detected Jupyter notebook. Loading juliacall extension. Set `PYSR_AUTOLOAD_EXTENSIONS=no` to disable.\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Precompiling SymbolicRegression\n", "\u001b[32m ✓ \u001b[39mSymbolicRegression\n", " 1 dependency successfully precompiled in 26 seconds. 106 already precompiled.\n", "Precompiling SymbolicRegressionJSON3Ext\n", "\u001b[32m ✓ \u001b[39m\u001b[90mSymbolicRegression → SymbolicRegressionJSON3Ext\u001b[39m\n", " 1 dependency successfully precompiled in 2 seconds. 110 already precompiled.\n" ] } ], "source": [ "# NBVAL_IGNORE_OUTPUT\n", "import numpy as np\n", "from pysr import PySRRegressor, jl" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "3\n" ] } ], "source": [ "%%julia\n", "\n", "# Automatically activates Julia magic\n", "\n", "x = 1\n", "println(x + 2)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "4\n" ] } ], "source": [ "%julia println(x + 3)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "my_loss (generic function with 1 method)" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "%%julia\n", "function my_loss(x)\n", " x ^ 2\n", "end" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "4" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "%julia my_loss(2)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'PySRRegressor.equations_ = None'" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rstate = np.random.RandomState(0)\n", "X = np.random.randn(10, 2)\n", "y = np.random.randn(10)\n", "\n", "model = PySRRegressor(deterministic=True, multithreading=False, procs=0, random_state=0, verbosity=0, progress=False, niterations=1, ncycles_per_iteration=1)\n", "str(model)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/mcranmer/PermaDocuments/SymbolicRegressionMonorepo/.venv/lib/python3.12/site-packages/pysr/sr.py:1297: UserWarning: Note: it looks like you are running in Jupyter. The progress bar will be turned off.\n", " warnings.warn(\n" ] }, { "data": { "text/plain": [ "pandas.core.frame.DataFrame" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.fit(X, y)\n", "type(model.equations_)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.1" } }, "nbformat": 4, "nbformat_minor": 2 }