import difflib import inspect import os import re from pathlib import Path from typing import Any, List, TypeVar, Union from numpy import ndarray from sklearn.utils.validation import _check_feature_names_in # type: ignore T = TypeVar("T", bound=Any) ArrayLike = Union[ndarray, List[T]] PathLike = Union[str, Path] def _csv_filename_to_pkl_filename(csv_filename: PathLike) -> PathLike: if os.path.splitext(csv_filename)[1] == ".pkl": return csv_filename # Assume that the csv filename is of the form "foo.csv" assert str(csv_filename).endswith(".csv") dirname = str(os.path.dirname(csv_filename)) basename = str(os.path.basename(csv_filename)) base = str(os.path.splitext(basename)[0]) pkl_basename = base + ".pkl" return os.path.join(dirname, pkl_basename) _regexp_im = re.compile(r"\b(\d+\.\d+)im\b") _regexp_im_sci = re.compile(r"\b(\d+\.\d+)[eEfF]([+-]?\d+)im\b") _regexp_sci = re.compile(r"\b(\d+\.\d+)[eEfF]([+-]?\d+)\b") _apply_regexp_im = lambda x: _regexp_im.sub(r"\1j", x) _apply_regexp_im_sci = lambda x: _regexp_im_sci.sub(r"\1e\2j", x) _apply_regexp_sci = lambda x: _regexp_sci.sub(r"\1e\2", x) def _preprocess_julia_floats(s: str) -> str: if isinstance(s, str): s = _apply_regexp_im(s) s = _apply_regexp_im_sci(s) s = _apply_regexp_sci(s) return s def _safe_check_feature_names_in(self, variable_names, generate_names=True): """_check_feature_names_in with compat for old versions.""" try: return _check_feature_names_in( self, variable_names, generate_names=generate_names ) except TypeError: return _check_feature_names_in(self, variable_names) def _subscriptify(i: int) -> str: """Converts integer to subscript text form. For example, 123 -> "₁₂₃". """ return "".join([chr(0x2080 + int(c)) for c in str(i)]) def _suggest_keywords(cls, k: str) -> List[str]: valid_keywords = [ param for param in inspect.signature(cls.__init__).parameters if param not in ["self", "kwargs"] ] suggestions = difflib.get_close_matches(k, valid_keywords, n=3) return suggestions