File size: 2,278 Bytes
a3c36fd
4207871
a3c36fd
b7541ec
4207871
d710548
 
 
 
 
 
 
e57f927
f5a151f
 
31db34d
bc45490
 
 
 
 
 
 
 
b7541ec
 
 
 
 
 
 
 
 
 
 
 
 
 
bc45490
31db34d
 
 
 
 
 
 
 
 
 
745ec89
 
 
e57f927
 
bc45490
 
 
3cd0d7b
bc45490
7e5c64b
 
 
bc45490
 
33354da
bc45490
 
7e5c64b
bc45490
 
33354da
bc45490
7e5c64b
bc45490
 
33354da
bc45490
 
7e5c64b
33354da
 
7e5c64b
bc45490
 
4207871
bc45490
4207871
a3c36fd
bc45490
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import gradio as gr
import os
import tempfile
import pandas as pd

empty_df = pd.DataFrame(
    {
        "equation": [],
        "loss": [],
        "complexity": [],
    }
)

os.system("bash install_pysr.sh")


def greet(
    file_obj: tempfile._TemporaryFileWrapper,
    col_to_fit: str,
    niterations: int,
    binary_operators: list,
    unary_operators: list,
):
    if col_to_fit == "":
        return (
            empty_df,
            "Please enter a column to predict!",
        )
    if len(binary_operators) == 0 and len(unary_operators) == 0:
        return (
            empty_df,
            "Please select at least one operator!",
        )
    if file_obj is None:
        return (
            empty_df,
            "Please upload a CSV file!",
        )

    binary_operators = str(binary_operators).replace("'", '"')
    unary_operators = str(unary_operators).replace("'", '"')
    os.system(
        f"python run_pysr_and_save.py "
        f"--niterations {niterations} "
        f"--binary_operators '{binary_operators}' "
        f"--unary_operators '{unary_operators}' "
        f"--col_to_fit {col_to_fit} "
        f"--filename {file_obj.name}"
    )
    df = pd.read_csv("pysr_output.csv")
    error_log = open("error.log", "r").read()
    return df, error_log


def main():
    demo = gr.Interface(
        fn=greet,
        description="PySR Demo",
        inputs=[
            gr.inputs.File(label="Upload a CSV File"),
            gr.inputs.Textbox(label="Column to Predict", placeholder="y"),
            gr.inputs.Slider(
                minimum=1,
                maximum=1000,
                default=40,
                label="Number of iterations",
            ),
            gr.inputs.CheckboxGroup(
                choices=["+", "-", "*", "/", "^"],
                label="Binary Operators",
                default=["+", "-", "*", "/"],
            ),
            gr.inputs.CheckboxGroup(
                choices=["sin", "cos", "exp", "log"],
                label="Unary Operators",
                default=[],
            ),
        ],
        outputs=[
            "dataframe",
            gr.outputs.Textbox(label="Error Log"),
        ],
    )
    # Add file to the demo:

    demo.launch()


if __name__ == "__main__":
    main()