File size: 3,174 Bytes
a3c36fd
4207871
a3c36fd
b7541ec
4207871
d710548
 
 
 
 
 
 
e57f927
f5a151f
 
31db34d
bc45490
 
 
 
 
 
5c5efaf
bc45490
 
b7541ec
 
 
 
 
 
 
 
 
 
 
 
 
 
5c5efaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc45490
31db34d
 
 
 
 
 
 
 
 
 
745ec89
 
 
e57f927
 
bc45490
 
 
3cd0d7b
bc45490
7e5c64b
 
 
bc45490
 
33354da
bc45490
 
7e5c64b
bc45490
 
33354da
bc45490
7e5c64b
bc45490
 
33354da
bc45490
5c5efaf
 
 
 
bc45490
7e5c64b
33354da
 
7e5c64b
bc45490
 
4207871
bc45490
4207871
a3c36fd
bc45490
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import gradio as gr
import os
import tempfile
import pandas as pd

empty_df = pd.DataFrame(
    {
        "equation": [],
        "loss": [],
        "complexity": [],
    }
)

os.system("bash install_pysr.sh")


def greet(
    file_obj: tempfile._TemporaryFileWrapper,
    col_to_fit: str,
    niterations: int,
    binary_operators: list,
    unary_operators: list,
    force_run: bool,
):
    if col_to_fit == "":
        return (
            empty_df,
            "Please enter a column to predict!",
        )
    if len(binary_operators) == 0 and len(unary_operators) == 0:
        return (
            empty_df,
            "Please select at least one operator!",
        )
    if file_obj is None:
        return (
            empty_df,
            "Please upload a CSV file!",
        )
    # Look at some statistics of the file:
    df = pd.read_csv(file_obj.name)
    if len(df) == 0:
        return (
            empty_df,
            "The file is empty!",
        )
    if len(df.columns) == 1:
        return (
            empty_df,
            "The file has only one column!",
        )
    if col_to_fit not in df.columns:
        return (
            empty_df,
            "The column to predict is not in the file!",
        )
    if len(df) > 1000 and not force_run:
        return (
            empty_df,
            "You have uploaded a file with more than 2000 rows. "
            "This will take very long to run. "
            "Please upload a subsample of the data, "
            "or check the box 'Ignore Warnings'."
        )

    binary_operators = str(binary_operators).replace("'", '"')
    unary_operators = str(unary_operators).replace("'", '"')
    os.system(
        f"python run_pysr_and_save.py "
        f"--niterations {niterations} "
        f"--binary_operators '{binary_operators}' "
        f"--unary_operators '{unary_operators}' "
        f"--col_to_fit {col_to_fit} "
        f"--filename {file_obj.name}"
    )
    df = pd.read_csv("pysr_output.csv")
    error_log = open("error.log", "r").read()
    return df, error_log


def main():
    demo = gr.Interface(
        fn=greet,
        description="PySR Demo",
        inputs=[
            gr.inputs.File(label="Upload a CSV File"),
            gr.inputs.Textbox(label="Column to Predict", placeholder="y"),
            gr.inputs.Slider(
                minimum=1,
                maximum=1000,
                default=40,
                label="Number of iterations",
            ),
            gr.inputs.CheckboxGroup(
                choices=["+", "-", "*", "/", "^"],
                label="Binary Operators",
                default=["+", "-", "*", "/"],
            ),
            gr.inputs.CheckboxGroup(
                choices=["sin", "cos", "exp", "log"],
                label="Unary Operators",
                default=[],
            ),
            gr.inputs.Checkbox(
                default=False,
                label="Ignore Warnings",
            )
        ],
        outputs=[
            "dataframe",
            gr.outputs.Textbox(label="Error Log"),
        ],
    )
    # Add file to the demo:

    demo.launch()


if __name__ == "__main__":
    main()