PySR_Old / app.py
MilesCranmer's picture
Fix gradio issues
7e5c64b
raw
history blame
2.58 kB
import io
import gradio as gr
import os
import tempfile
import numpy as np
import pandas as pd
def greet(
file_obj: tempfile._TemporaryFileWrapper,
col_to_fit: str,
niterations: int,
binary_operators: list,
unary_operators: list,
):
empty_df = pd.DataFrame(
{
"equation": [],
"loss": [],
"complexity": [],
}
)
if col_to_fit == "":
return (
empty_df,
"Please enter a column to predict!",
)
if len(binary_operators) == 0 and len(unary_operators) == 0:
return (
empty_df,
"Please select at least one operator!",
)
if file_obj is None:
return (
empty_df,
"Please upload a CSV file!",
)
niterations = int(niterations)
# Need to install PySR in separate python instance:
os.system(
"""if [ ! -d "$HOME/.julia/environments/pysr-0.9.1" ]
then
python -c 'import pysr; pysr.install()'
fi"""
)
from pysr import PySRRegressor
df = pd.read_csv(file_obj.name)
y = np.array(df[col_to_fit])
X = df.drop([col_to_fit], axis=1)
model = PySRRegressor(
update=False,
temp_equation_file=True,
niterations=niterations,
binary_operators=binary_operators,
unary_operators=unary_operators,
)
model.fit(X, y)
df = model.equations_[["equation", "loss", "complexity"]]
# Convert all columns to string type:
df = df.astype(str)
return df, "Successful."
def main():
demo = gr.Interface(
fn=greet,
description="A demo of PySR",
inputs=[
gr.inputs.File(label="Upload a CSV File"),
gr.inputs.Textbox(label="Column to Predict", placeholder="y"),
gr.inputs.Slider(
minimum=1,
maximum=1000,
value=40,
label="Number of iterations",
),
gr.inputs.CheckboxGroup(
choices=["+", "-", "*", "/", "^"],
label="Binary Operators",
value=["+", "-", "*", "/"],
),
gr.inputs.CheckboxGroup(
choices=["sin", "cos", "exp", "log"],
label="Unary Operators",
value=[],
),
],
outputs=[
gr.outputs.DataFrame(label="Equations"),
gr.outputs.Textbox(label="Error Log")
],
)
# Add file to the demo:
demo.launch()
if __name__ == "__main__":
main()