Spaces:
Sleeping
Sleeping
MilesCranmer
commited on
Move everything to app.py
Browse files- app.py +36 -13
- run_pysr_and_save.py +0 -71
app.py
CHANGED
@@ -1,7 +1,10 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import os
|
3 |
-
import tempfile
|
4 |
import pandas as pd
|
|
|
|
|
|
|
5 |
|
6 |
empty_df = pd.DataFrame(
|
7 |
{
|
@@ -13,7 +16,7 @@ empty_df = pd.DataFrame(
|
|
13 |
|
14 |
|
15 |
def greet(
|
16 |
-
file_obj: tempfile._TemporaryFileWrapper,
|
17 |
col_to_fit: str,
|
18 |
niterations: int,
|
19 |
maxsize: int,
|
@@ -65,19 +68,39 @@ def greet(
|
|
65 |
|
66 |
binary_operators = str(binary_operators).replace("'", '"')
|
67 |
unary_operators = str(unary_operators).replace("'", '"')
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
76 |
)
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
|
|
|
|
81 |
|
82 |
def main():
|
83 |
demo = gr.Interface(
|
|
|
1 |
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
import os
|
|
|
4 |
import pandas as pd
|
5 |
+
import pysr
|
6 |
+
import tempfile
|
7 |
+
from typing import Optional
|
8 |
|
9 |
empty_df = pd.DataFrame(
|
10 |
{
|
|
|
16 |
|
17 |
|
18 |
def greet(
|
19 |
+
file_obj: Optional[tempfile._TemporaryFileWrapper],
|
20 |
col_to_fit: str,
|
21 |
niterations: int,
|
22 |
maxsize: int,
|
|
|
68 |
|
69 |
binary_operators = str(binary_operators).replace("'", '"')
|
70 |
unary_operators = str(unary_operators).replace("'", '"')
|
71 |
+
|
72 |
+
df = pd.read_csv(file_obj)
|
73 |
+
y = np.array(df[col_to_fit])
|
74 |
+
X = df.drop([col_to_fit], axis=1)
|
75 |
+
|
76 |
+
model = pysr.PySRRegressor(
|
77 |
+
progress=False,
|
78 |
+
verbosity=0,
|
79 |
+
maxsize=maxsize,
|
80 |
+
niterations=niterations,
|
81 |
+
binary_operators=binary_operators,
|
82 |
+
unary_operators=unary_operators,
|
83 |
)
|
84 |
+
model.fit(X, y)
|
85 |
+
|
86 |
+
df = model.equations_[["equation", "loss", "complexity"]]
|
87 |
+
# Convert all columns to string type:
|
88 |
+
df = df.astype(str)
|
89 |
+
msg = (
|
90 |
+
"Success!\n"
|
91 |
+
f"You may run the model locally (faster) with "
|
92 |
+
f"the following parameters:"
|
93 |
+
+f"""
|
94 |
+
model = PySRRegressor(
|
95 |
+
niterations={niterations},
|
96 |
+
binary_operators={str(binary_operators)},
|
97 |
+
unary_operators={str(unary_operators)},
|
98 |
+
maxsize={maxsize},
|
99 |
+
)
|
100 |
+
model.fit(X, y)""")
|
101 |
|
102 |
+
df.to_csv("pysr_output.csv", index=False)
|
103 |
+
return df, msg
|
104 |
|
105 |
def main():
|
106 |
demo = gr.Interface(
|
run_pysr_and_save.py
DELETED
@@ -1,71 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import pandas as pd
|
3 |
-
import traceback as tb
|
4 |
-
import numpy as np
|
5 |
-
from pysr import PySRRegressor
|
6 |
-
from argparse import ArgumentParser
|
7 |
-
|
8 |
-
# Args:
|
9 |
-
# niterations
|
10 |
-
# binary_operators
|
11 |
-
# unary_operators
|
12 |
-
# col_to_fit
|
13 |
-
|
14 |
-
empty_df = pd.DataFrame(
|
15 |
-
{
|
16 |
-
"equation": [],
|
17 |
-
"loss": [],
|
18 |
-
"complexity": [],
|
19 |
-
}
|
20 |
-
)
|
21 |
-
|
22 |
-
if __name__ == "__main__":
|
23 |
-
parser = ArgumentParser()
|
24 |
-
parser.add_argument("--niterations", type=int)
|
25 |
-
parser.add_argument("--maxsize", type=int)
|
26 |
-
parser.add_argument("--binary_operators", type=str)
|
27 |
-
parser.add_argument("--unary_operators", type=str)
|
28 |
-
parser.add_argument("--col_to_fit", type=str)
|
29 |
-
parser.add_argument("--filename", type=str)
|
30 |
-
args = parser.parse_args()
|
31 |
-
niterations = args.niterations
|
32 |
-
binary_operators = eval(args.binary_operators)
|
33 |
-
unary_operators = eval(args.unary_operators)
|
34 |
-
col_to_fit = args.col_to_fit
|
35 |
-
filename = args.filename
|
36 |
-
maxsize = args.maxsize
|
37 |
-
|
38 |
-
|
39 |
-
df = pd.read_csv(filename)
|
40 |
-
y = np.array(df[col_to_fit])
|
41 |
-
X = df.drop([col_to_fit], axis=1)
|
42 |
-
|
43 |
-
model = PySRRegressor(
|
44 |
-
progress=False,
|
45 |
-
verbosity=0,
|
46 |
-
maxsize=maxsize,
|
47 |
-
niterations=niterations,
|
48 |
-
binary_operators=binary_operators,
|
49 |
-
unary_operators=unary_operators,
|
50 |
-
)
|
51 |
-
model.fit(X, y)
|
52 |
-
|
53 |
-
df = model.equations_[["equation", "loss", "complexity"]]
|
54 |
-
# Convert all columns to string type:
|
55 |
-
df = df.astype(str)
|
56 |
-
error_message = (
|
57 |
-
"Success!\n"
|
58 |
-
f"You may run the model locally (faster) with "
|
59 |
-
f"the following parameters:"
|
60 |
-
+f"""
|
61 |
-
model = PySRRegressor(
|
62 |
-
niterations={niterations},
|
63 |
-
binary_operators={str(binary_operators)},
|
64 |
-
unary_operators={str(unary_operators)},
|
65 |
-
maxsize={maxsize},
|
66 |
-
)
|
67 |
-
model.fit(X, y)""")
|
68 |
-
|
69 |
-
df.to_csv("pysr_output.csv", index=False)
|
70 |
-
with open("error.log", "w") as f:
|
71 |
-
f.write(error_message)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|