Spaces:
Sleeping
Sleeping
File size: 3,026 Bytes
a3c36fd 4207871 a3c36fd b7541ec d98720a 4207871 e57f927 bc45490 b7541ec bc45490 b7541ec bc45490 a3c36fd aa3260f a3c36fd bc45490 e57f927 bc45490 d98720a bc45490 b7541ec e57f927 bc45490 3cd0d7b bc45490 7e5c64b bc45490 33354da bc45490 7e5c64b bc45490 33354da bc45490 7e5c64b bc45490 33354da bc45490 7e5c64b 33354da 7e5c64b bc45490 4207871 bc45490 4207871 a3c36fd bc45490 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
import io
import gradio as gr
import os
import tempfile
import numpy as np
import pandas as pd
import traceback as tb
def greet(
file_obj: tempfile._TemporaryFileWrapper,
col_to_fit: str,
niterations: int,
binary_operators: list,
unary_operators: list,
):
empty_df = pd.DataFrame(
{
"equation": [],
"loss": [],
"complexity": [],
}
)
if col_to_fit == "":
return (
empty_df,
"Please enter a column to predict!",
)
if len(binary_operators) == 0 and len(unary_operators) == 0:
return (
empty_df,
"Please select at least one operator!",
)
if file_obj is None:
return (
empty_df,
"Please upload a CSV file!",
)
niterations = int(niterations)
# Need to install PySR in separate python instance:
os.system(
"""if [ ! -d "$HOME/.julia/environments/pysr-0.9.3" ]
then
python -c 'import pysr; pysr.install()'
fi"""
)
from pysr import PySRRegressor
df = pd.read_csv(file_obj.name)
y = np.array(df[col_to_fit])
X = df.drop([col_to_fit], axis=1)
model = PySRRegressor(
update=False,
temp_equation_file=True,
niterations=niterations,
binary_operators=binary_operators,
unary_operators=unary_operators,
)
try:
model.fit(X, y)
# Catch all error:
except Exception as e:
error_traceback = tb.format_exc()
if "CalledProcessError" in error_traceback:
return (
empty_df,
"Could not initialize Julia. Error message:\n"
+ error_traceback,
)
else:
return (
empty_df,
"Failed due to error:\n" + error_traceback,
)
df = model.equations_[["equation", "loss", "complexity"]]
# Convert all columns to string type:
df = df.astype(str)
return df, "Successful."
def main():
demo = gr.Interface(
fn=greet,
description="PySR Demo",
inputs=[
gr.inputs.File(label="Upload a CSV File"),
gr.inputs.Textbox(label="Column to Predict", placeholder="y"),
gr.inputs.Slider(
minimum=1,
maximum=1000,
default=40,
label="Number of iterations",
),
gr.inputs.CheckboxGroup(
choices=["+", "-", "*", "/", "^"],
label="Binary Operators",
default=["+", "-", "*", "/"],
),
gr.inputs.CheckboxGroup(
choices=["sin", "cos", "exp", "log"],
label="Unary Operators",
default=[],
),
],
outputs=[
"dataframe",
gr.outputs.Textbox(label="Error Log"),
],
)
# Add file to the demo:
demo.launch()
if __name__ == "__main__":
main()
|