Spaces:
Sleeping
Sleeping
File size: 3,576 Bytes
a3c36fd 4207871 a3c36fd b7541ec 4207871 d710548 e57f927 f5a151f 31db34d bc45490 2b58e9e bc45490 5c5efaf bc45490 b7541ec 5c5efaf bc45490 31db34d 2b58e9e 31db34d 745ec89 e57f927 bc45490 3cd939f bc45490 7e5c64b bc45490 33354da 2b58e9e eba77c5 2b58e9e eba77c5 bc45490 7e5c64b bc45490 33354da bc45490 7e5c64b 882b748 bc45490 33354da bc45490 5c5efaf bc45490 7e5c64b 33354da 7e5c64b bc45490 4207871 bc45490 4207871 a3c36fd bc45490 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import gradio as gr
import os
import tempfile
import pandas as pd
empty_df = pd.DataFrame(
{
"equation": [],
"loss": [],
"complexity": [],
}
)
os.system("bash install_pysr.sh")
def greet(
file_obj: tempfile._TemporaryFileWrapper,
maxsize: int,
col_to_fit: str,
niterations: int,
binary_operators: list,
unary_operators: list,
force_run: bool,
):
if col_to_fit == "":
return (
empty_df,
"Please enter a column to predict!",
)
if len(binary_operators) == 0 and len(unary_operators) == 0:
return (
empty_df,
"Please select at least one operator!",
)
if file_obj is None:
return (
empty_df,
"Please upload a CSV file!",
)
# Look at some statistics of the file:
df = pd.read_csv(file_obj.name)
if len(df) == 0:
return (
empty_df,
"The file is empty!",
)
if len(df.columns) == 1:
return (
empty_df,
"The file has only one column!",
)
if col_to_fit not in df.columns:
return (
empty_df,
"The column to predict is not in the file!",
)
if len(df) > 1000 and not force_run:
return (
empty_df,
"You have uploaded a file with more than 2000 rows. "
"This will take very long to run. "
"Please upload a subsample of the data, "
"or check the box 'Ignore Warnings'."
)
binary_operators = str(binary_operators).replace("'", '"')
unary_operators = str(unary_operators).replace("'", '"')
os.system(
f"python run_pysr_and_save.py "
f"--niterations {niterations} "
f"--maxsize {maxsize} "
f"--binary_operators '{binary_operators}' "
f"--unary_operators '{unary_operators}' "
f"--col_to_fit {col_to_fit} "
f"--filename {file_obj.name}"
)
df = pd.read_csv("pysr_output.csv")
error_log = open("error.log", "r").read()
return df, error_log
def main():
demo = gr.Interface(
fn=greet,
description="Symbolic Regression with PySR. Watch search progress by clicking 'See logs'!",
inputs=[
gr.inputs.File(label="Upload a CSV File"),
gr.inputs.Textbox(label="Column to Predict", placeholder="y"),
gr.inputs.Slider(
minimum=1,
maximum=1000,
default=40,
label="Number of Iterations",
step=1,
),
gr.inputs.Slider(
minimum=7,
maximum=35,
default=20,
label="Maximum Complexity",
step=1,
),
gr.inputs.CheckboxGroup(
choices=["+", "-", "*", "/", "^"],
label="Binary Operators",
default=["+", "-", "*", "/"],
),
gr.inputs.CheckboxGroup(
choices=["sin", "cos", "exp", "log", "square", "cube",
"sqrt", "abs", "tan"],
label="Unary Operators",
default=[],
),
gr.inputs.Checkbox(
default=False,
label="Ignore Warnings",
)
],
outputs=[
"dataframe",
gr.outputs.Textbox(label="Error Log"),
],
)
# Add file to the demo:
demo.launch()
if __name__ == "__main__":
main()
|