Spaces:
Sleeping
Sleeping
Commit
·
e5e63f7
1
Parent(s):
6441deb
Adding code for SmolLM2 text generator app
Browse files- README.md +65 -1
- app.py +80 -0
- model.py +245 -0
- requirements.txt +3 -0
- smollm2_final.pt +3 -0
README.md
CHANGED
@@ -9,4 +9,68 @@ app_file: app.py
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
# SmolLM2 Text Generator
|
13 |
+
|
14 |
+
This is a Gradio application for generating text using the trained SmolLM2 model. The app allows users to input a text prompt and generate multiple sequences of text based on that prompt. The number of sequences and the length of the generated text can be adjusted using sliders.
|
15 |
+
|
16 |
+
## Features
|
17 |
+
|
18 |
+
- **Text Generation**: Generate text based on a user-provided prompt using the SmolLM2 model.
|
19 |
+
- **Adjustable Length**: Control the length of the generated text.
|
20 |
+
- **Multiple Sequences**: Generate multiple sequences of text in one go.
|
21 |
+
|
22 |
+
## Requirements
|
23 |
+
|
24 |
+
To run this application, you need the following Python packages:
|
25 |
+
|
26 |
+
- `torch`
|
27 |
+
- `transformers`
|
28 |
+
- `gradio`
|
29 |
+
|
30 |
+
You can install the required packages using pip:
|
31 |
+
|
32 |
+
```bash
|
33 |
+
pip install -r requirements.txt
|
34 |
+
```
|
35 |
+
|
36 |
+
## Usage
|
37 |
+
|
38 |
+
1. **Run the App**: Launch the Gradio app by running the following command in your terminal:
|
39 |
+
|
40 |
+
```bash
|
41 |
+
python app.py
|
42 |
+
```
|
43 |
+
|
44 |
+
2. **Input Prompt**: Enter your desired text prompt in the provided textbox.
|
45 |
+
|
46 |
+
3. **Adjust Sliders**:
|
47 |
+
- Use the "Predict Additional Text of Length" slider to set the desired length of the generated text.
|
48 |
+
- Use the "Number of Sequences to Generate" slider to specify how many sequences you want to generate.
|
49 |
+
|
50 |
+
4. **Generate Text**: Click the "Generate Text" button to produce the text sequences.
|
51 |
+
|
52 |
+
5. **View Output**: The generated sequences will be displayed in the output textbox, each prefixed with "Sequence X:" for clarity.
|
53 |
+
|
54 |
+
## Example
|
55 |
+
|
56 |
+
- **Prompt**: "Once upon a time"
|
57 |
+
- **Number of Sequences**: 2
|
58 |
+
|
59 |
+
**Output**:
|
60 |
+
```
|
61 |
+
Sequence 1:
|
62 |
+
Once upon a time, there is a cat ....
|
63 |
+
|
64 |
+
Sequence 2:
|
65 |
+
Once upon a time in a small village ....
|
66 |
+
```
|
67 |
+
|
68 |
+
## License
|
69 |
+
|
70 |
+
This project is licensed under the MIT License. See the LICENSE file for more details.
|
71 |
+
|
72 |
+
## Acknowledgments
|
73 |
+
|
74 |
+
- Hugging Face for the Transformers library and model support.
|
75 |
+
- Gradio for providing an easy-to-use interface for machine learning applications.
|
76 |
+
- The SmolLM2 model for enabling advanced text generation capabilities.
|
app.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
from model import SmolLM2 # Ensure this imports your model correctly
|
5 |
+
|
6 |
+
# Load the model and tokenizer
|
7 |
+
model_path = "smollm2_final.pt"
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/cosmo2-tokenizer") # Adjust if necessary
|
9 |
+
|
10 |
+
# Load model configuration
|
11 |
+
model_config = {
|
12 |
+
"bos_token_id": 0,
|
13 |
+
"eos_token_id": 0,
|
14 |
+
"hidden_act": "silu",
|
15 |
+
"hidden_size": 576,
|
16 |
+
"initializer_range": 0.041666666666666664,
|
17 |
+
"intermediate_size": 1536,
|
18 |
+
"is_llama_config": True,
|
19 |
+
"max_position_embeddings": 2048,
|
20 |
+
"num_attention_heads": 9,
|
21 |
+
"num_hidden_layers": 30,
|
22 |
+
"num_key_value_heads": 3,
|
23 |
+
"pad_token_id": None,
|
24 |
+
"pretraining_tp": 1,
|
25 |
+
"rms_norm_eps": 1.0e-05,
|
26 |
+
"rope_interleaved": False,
|
27 |
+
"rope_scaling": None,
|
28 |
+
"rope_theta": 10000.0,
|
29 |
+
"tie_word_embeddings": True,
|
30 |
+
"use_cache": True,
|
31 |
+
"vocab_size": 49152
|
32 |
+
}
|
33 |
+
|
34 |
+
# Initialize the model with the configuration
|
35 |
+
model = SmolLM2(model_config) # Pass the configuration to the model
|
36 |
+
|
37 |
+
# Load the model weights with map_location to handle CPU-only environments
|
38 |
+
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))) # Load the model weights
|
39 |
+
model.eval() # Set the model to evaluation mode
|
40 |
+
|
41 |
+
def generate_text(prompt, length, num_sequences):
|
42 |
+
input_ids = tokenizer(prompt, return_tensors="pt")["input_ids"]
|
43 |
+
|
44 |
+
generated_texts = []
|
45 |
+
for _ in range(num_sequences):
|
46 |
+
generated_sequence = model.generate(
|
47 |
+
input_ids,
|
48 |
+
max_length=length + len(input_ids[0]), # Adjust for input length
|
49 |
+
pad_token_id=tokenizer.pad_token_id,
|
50 |
+
do_sample=True,
|
51 |
+
temperature=0.8,
|
52 |
+
top_k=50,
|
53 |
+
top_p=0.95
|
54 |
+
)
|
55 |
+
|
56 |
+
# Decode the generated sequence
|
57 |
+
generated_text = tokenizer.decode(generated_sequence[0], skip_special_tokens=True)
|
58 |
+
generated_texts.append(generated_text)
|
59 |
+
|
60 |
+
# Format the output
|
61 |
+
formatted_output = "\n\n".join([f"Sequence {i + 1}:\n{text}" for i, text in enumerate(generated_texts)])
|
62 |
+
return formatted_output
|
63 |
+
|
64 |
+
# Create Gradio interface
|
65 |
+
with gr.Blocks() as app:
|
66 |
+
gr.Markdown("# SmolLM2 Text Generator")
|
67 |
+
prompt_input = gr.Textbox(label="Enter your text prompt", placeholder="Type your prompt here...")
|
68 |
+
length_slider = gr.Slider(minimum=10, maximum=200, label="Predict Additional Text of Length", value=50)
|
69 |
+
num_sequences_slider = gr.Slider(minimum=1, maximum=5, label="Number of Sequences to Generate", value=1, step=1) # Step set to 1 for integer values
|
70 |
+
generate_button = gr.Button("Generate Text")
|
71 |
+
output_text = gr.Textbox(label="Generated Text", interactive=False)
|
72 |
+
|
73 |
+
generate_button.click(
|
74 |
+
fn=generate_text,
|
75 |
+
inputs=[prompt_input, length_slider, num_sequences_slider],
|
76 |
+
outputs=output_text
|
77 |
+
)
|
78 |
+
|
79 |
+
# Launch the app
|
80 |
+
app.launch()
|
model.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
def _init_weights(module, std=0.041666666666666664):
|
7 |
+
if isinstance(module, nn.Linear):
|
8 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
9 |
+
elif isinstance(module, nn.Embedding):
|
10 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
11 |
+
|
12 |
+
class RMSNorm(nn.Module):
|
13 |
+
def __init__(self, dim, eps=1e-5):
|
14 |
+
super().__init__()
|
15 |
+
self.eps = eps
|
16 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
17 |
+
|
18 |
+
def forward(self, x):
|
19 |
+
norm = torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
20 |
+
return x * norm * self.weight
|
21 |
+
|
22 |
+
class RotaryEmbedding(nn.Module):
|
23 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, theta=10000.0):
|
24 |
+
super().__init__()
|
25 |
+
self.dim = dim
|
26 |
+
self.max_position_embeddings = max_position_embeddings
|
27 |
+
self.base = base
|
28 |
+
self.theta = theta
|
29 |
+
|
30 |
+
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2).float() / dim))
|
31 |
+
self.register_buffer("inv_freq", inv_freq)
|
32 |
+
|
33 |
+
t = torch.arange(self.max_position_embeddings).type_as(self.inv_freq)
|
34 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
35 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
36 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :])
|
37 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :])
|
38 |
+
|
39 |
+
def forward(self, x, seq_len=None):
|
40 |
+
if seq_len > self.max_position_embeddings:
|
41 |
+
seq_len = self.max_position_embeddings
|
42 |
+
|
43 |
+
return (
|
44 |
+
self.cos_cached[:,:,:seq_len,:],
|
45 |
+
self.sin_cached[:,:,:seq_len,:]
|
46 |
+
)
|
47 |
+
|
48 |
+
def rotate_half(x):
|
49 |
+
"""Rotates half the hidden dims of the input."""
|
50 |
+
x1, x2 = x.chunk(2, dim=-1)
|
51 |
+
return torch.cat((-x2, x1), dim=-1)
|
52 |
+
|
53 |
+
def apply_rotary_pos_emb(q, k, cos, sin):
|
54 |
+
# Ensure proper broadcasting
|
55 |
+
cos = cos[:, :, :q.size(2), :] # [batch, 1, seq_len, dim]
|
56 |
+
sin = sin[:, :, :q.size(2), :] # [batch, 1, seq_len, dim]
|
57 |
+
|
58 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
59 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
60 |
+
return q_embed, k_embed
|
61 |
+
|
62 |
+
class Attention(nn.Module):
|
63 |
+
def __init__(self, config):
|
64 |
+
super().__init__()
|
65 |
+
self.hidden_size = config["hidden_size"]
|
66 |
+
self.num_attention_heads = config["num_attention_heads"]
|
67 |
+
self.num_key_value_heads = config["num_key_value_heads"]
|
68 |
+
self.head_dim = self.hidden_size // self.num_attention_heads
|
69 |
+
|
70 |
+
self.q_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
71 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
72 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
73 |
+
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
74 |
+
|
75 |
+
self.kv_cache = None
|
76 |
+
|
77 |
+
def forward(self, hidden_states, cos, sin, attention_mask=None, use_cache=False):
|
78 |
+
batch_size, seq_length, _ = hidden_states.shape
|
79 |
+
|
80 |
+
q = self.q_proj(hidden_states)
|
81 |
+
k = self.k_proj(hidden_states)
|
82 |
+
v = self.v_proj(hidden_states)
|
83 |
+
|
84 |
+
# Reshape for attention computation
|
85 |
+
q = q.view(batch_size, seq_length, self.num_attention_heads, self.head_dim)
|
86 |
+
k = k.view(batch_size, seq_length, self.num_key_value_heads, self.head_dim)
|
87 |
+
v = v.view(batch_size, seq_length, self.num_key_value_heads, self.head_dim)
|
88 |
+
|
89 |
+
# Transpose for attention computation
|
90 |
+
q = q.transpose(1, 2) # [batch, num_heads, seq_len, head_dim]
|
91 |
+
k = k.transpose(1, 2) # [batch, num_kv_heads, seq_len, head_dim]
|
92 |
+
v = v.transpose(1, 2) # [batch, num_kv_heads, seq_len, head_dim]
|
93 |
+
|
94 |
+
# Apply rotary embeddings
|
95 |
+
q, k = apply_rotary_pos_emb(q, k, cos, sin)
|
96 |
+
|
97 |
+
# Repeat k/v heads if num_key_value_heads < num_attention_heads
|
98 |
+
if self.num_key_value_heads != self.num_attention_heads:
|
99 |
+
k = k.repeat_interleave(self.num_attention_heads // self.num_key_value_heads, dim=1)
|
100 |
+
v = v.repeat_interleave(self.num_attention_heads // self.num_key_value_heads, dim=1)
|
101 |
+
|
102 |
+
# Compute attention
|
103 |
+
attn_weights = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
|
104 |
+
|
105 |
+
if attention_mask is not None:
|
106 |
+
attn_weights = attn_weights + attention_mask
|
107 |
+
|
108 |
+
attn_weights = F.softmax(attn_weights, dim=-1)
|
109 |
+
|
110 |
+
# Compute output
|
111 |
+
output = torch.matmul(attn_weights, v)
|
112 |
+
output = output.transpose(1, 2).contiguous() # [batch, seq_len, num_heads, head_dim]
|
113 |
+
output = output.view(batch_size, seq_length, -1)
|
114 |
+
|
115 |
+
return self.o_proj(output)
|
116 |
+
|
117 |
+
class MLP(nn.Module):
|
118 |
+
def __init__(self, config):
|
119 |
+
super().__init__()
|
120 |
+
self.gate_proj = nn.Linear(config["hidden_size"], config["intermediate_size"], bias=False)
|
121 |
+
self.up_proj = nn.Linear(config["hidden_size"], config["intermediate_size"], bias=False)
|
122 |
+
self.down_proj = nn.Linear(config["intermediate_size"], config["hidden_size"], bias=False)
|
123 |
+
self.act_fn = nn.SiLU()
|
124 |
+
|
125 |
+
def forward(self, x):
|
126 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
127 |
+
|
128 |
+
class DecoderLayer(nn.Module):
|
129 |
+
def __init__(self, config):
|
130 |
+
super().__init__()
|
131 |
+
self.self_attn = Attention(config)
|
132 |
+
self.mlp = MLP(config)
|
133 |
+
self.input_layernorm = RMSNorm(config["hidden_size"], eps=config["rms_norm_eps"])
|
134 |
+
self.post_attention_layernorm = RMSNorm(config["hidden_size"], eps=config["rms_norm_eps"])
|
135 |
+
|
136 |
+
def forward(self, hidden_states, cos, sin, attention_mask=None, use_cache=False):
|
137 |
+
residual = hidden_states
|
138 |
+
hidden_states = self.input_layernorm(hidden_states)
|
139 |
+
hidden_states = self.self_attn(hidden_states, cos, sin, attention_mask, use_cache)
|
140 |
+
hidden_states = residual + hidden_states
|
141 |
+
|
142 |
+
residual = hidden_states
|
143 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
144 |
+
hidden_states = self.mlp(hidden_states)
|
145 |
+
hidden_states = residual + hidden_states
|
146 |
+
|
147 |
+
return hidden_states
|
148 |
+
|
149 |
+
class SmolLM2(nn.Module):
|
150 |
+
def __init__(self, config):
|
151 |
+
super().__init__()
|
152 |
+
self.config = config
|
153 |
+
|
154 |
+
self.embed_tokens = nn.Embedding(config["vocab_size"], config["hidden_size"])
|
155 |
+
self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config["num_hidden_layers"])])
|
156 |
+
self.norm = RMSNorm(config["hidden_size"], eps=config["rms_norm_eps"])
|
157 |
+
self.rotary_emb = RotaryEmbedding(
|
158 |
+
config["hidden_size"] // config["num_attention_heads"],
|
159 |
+
max_position_embeddings=config["max_position_embeddings"],
|
160 |
+
theta=config.get("rope_theta", 10000.0)
|
161 |
+
)
|
162 |
+
|
163 |
+
# Initialize weights
|
164 |
+
self.apply(lambda p: _init_weights(p, std=config.get("initializer_range", 0.041666666666666664)))
|
165 |
+
|
166 |
+
def forward(self, input_ids, attention_mask=None, use_cache=False):
|
167 |
+
hidden_states = self.embed_tokens(input_ids)
|
168 |
+
|
169 |
+
seq_length = input_ids.shape[1]
|
170 |
+
cos, sin = self.rotary_emb(hidden_states, seq_length)
|
171 |
+
|
172 |
+
for layer in self.layers:
|
173 |
+
hidden_states = layer(hidden_states, cos, sin, attention_mask, use_cache)
|
174 |
+
|
175 |
+
hidden_states = self.norm(hidden_states)
|
176 |
+
|
177 |
+
# Use tied weights for the output projection
|
178 |
+
if self.config.get("tie_word_embeddings", True):
|
179 |
+
logits = F.linear(hidden_states, self.embed_tokens.weight)
|
180 |
+
else:
|
181 |
+
logits = self.lm_head(hidden_states)
|
182 |
+
|
183 |
+
return logits
|
184 |
+
|
185 |
+
def generate(
|
186 |
+
self,
|
187 |
+
input_ids,
|
188 |
+
max_length,
|
189 |
+
min_length=None,
|
190 |
+
num_return_sequences=1,
|
191 |
+
pad_token_id=None,
|
192 |
+
do_sample=True,
|
193 |
+
temperature=0.8,
|
194 |
+
top_k=50,
|
195 |
+
top_p=0.95
|
196 |
+
):
|
197 |
+
self.eval()
|
198 |
+
batch_size = input_ids.shape[0]
|
199 |
+
min_length = min_length if min_length is not None else input_ids.shape[1]
|
200 |
+
|
201 |
+
# Clear KV cache
|
202 |
+
for layer in self.layers:
|
203 |
+
layer.self_attn.kv_cache = None
|
204 |
+
|
205 |
+
with torch.no_grad():
|
206 |
+
for _ in range(max_length - input_ids.shape[1]):
|
207 |
+
outputs = self(input_ids, use_cache=True)
|
208 |
+
next_token_logits = outputs[:, -1, :]
|
209 |
+
|
210 |
+
# Apply temperature
|
211 |
+
next_token_logits = next_token_logits / temperature
|
212 |
+
|
213 |
+
# Apply top-k filtering
|
214 |
+
if top_k > 0:
|
215 |
+
indices_to_remove = next_token_logits < torch.topk(next_token_logits, top_k)[0][..., -1, None]
|
216 |
+
next_token_logits[indices_to_remove] = float('-inf')
|
217 |
+
|
218 |
+
# Apply top-p (nucleus) filtering
|
219 |
+
if top_p < 1.0:
|
220 |
+
sorted_logits, sorted_indices = torch.sort(next_token_logits, descending=True)
|
221 |
+
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
|
222 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
223 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
224 |
+
sorted_indices_to_remove[..., 0] = 0
|
225 |
+
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
|
226 |
+
next_token_logits[indices_to_remove] = float('-inf')
|
227 |
+
|
228 |
+
# Sample from the filtered distribution
|
229 |
+
if do_sample:
|
230 |
+
probs = torch.softmax(next_token_logits, dim=-1)
|
231 |
+
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
232 |
+
else:
|
233 |
+
next_tokens = torch.argmax(next_token_logits, dim=-1)
|
234 |
+
|
235 |
+
input_ids = torch.cat([input_ids, next_tokens.unsqueeze(-1)], dim=-1)
|
236 |
+
|
237 |
+
# Stop if all sequences have hit the pad token
|
238 |
+
if pad_token_id is not None and (next_tokens == pad_token_id).all():
|
239 |
+
break
|
240 |
+
|
241 |
+
# Stop if we've reached min_length
|
242 |
+
if input_ids.shape[1] < min_length:
|
243 |
+
continue
|
244 |
+
|
245 |
+
return input_ids
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
gradio
|
smollm2_final.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c96efcee9cd1f94cf2d072647409d1bfce940859d08e89cade4fd48b9502ad2b
|
3 |
+
size 269663830
|