File size: 7,753 Bytes
45b110b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import gradio as gr
import torch
import gc
from PIL import Image
import torchvision.transforms as T
import torch.nn.functional as F
from diffusers import DiffusionPipeline, LMSDiscreteScheduler

# Initialize model and configurations
# At the top level, add global variables
pipe = None
device = None
elastic_transformer = None

def init_model():
    global pipe, device
    if pipe is not None:
        return pipe, device
        
    torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
    torch_dtype = torch.float16 if torch_device == "cuda" else torch.float32
    
    pipe = DiffusionPipeline.from_pretrained(
        "CompVis/stable-diffusion-v1-4",
        torch_dtype=torch_dtype
    ).to(torch_device)
    
    # Load SD concepts
    concepts = {
        "dreams": "sd-concepts-library/dreams",
        "midjourney-style": "sd-concepts-library/midjourney-style",
        "moebius": "sd-concepts-library/moebius",
        "marc-allante": "sd-concepts-library/style-of-marc-allante",
        "wlop": "sd-concepts-library/wlop-style"
    }
    
    for concept in concepts.values():
        pipe.load_textual_inversion(concept, mean_resizing=False)
    
    device = torch_device
    return pipe, device

def init_transformers(device):
    global elastic_transformer
    if elastic_transformer is not None:
        return elastic_transformer
    elastic_transformer = T.ElasticTransform(alpha=550.0, sigma=5.0).to(device)
    return elastic_transformer

# Add after init_transformers and before generate_images
def image_loss(images, loss_type, device, elastic_transformer):
    if loss_type == 'blue':
        error = torch.abs(images[:,2] - 0.9).mean()
        return error.to(device)
    elif loss_type == 'elastic':
        transformed_imgs = elastic_transformer(images)
        error = torch.abs(transformed_imgs - images).mean()
        return error.to(device)
    elif loss_type == 'symmetry':
        flipped_image = torch.flip(images, [3])
        error = F.mse_loss(images, flipped_image)
        return error.to(device)
    elif loss_type == 'saturation':
        transformed_imgs = T.functional.adjust_saturation(images, saturation_factor=10)
        error = torch.abs(transformed_imgs - images).mean()
        return error.to(device)
    else:
        return torch.tensor(0.0).to(device)

def generate_images(prompt, concept):
    global pipe, device, elastic_transformer
    if pipe is None:
        pipe, device = init_model()
    if elastic_transformer is None:
        elastic_transformer = init_transformers(device)
    
    # Configuration
    height, width = 384, 384
    guidance_scale = 8
    num_inference_steps = 45
    loss_scale = 10.0
    
    # Create scheduler
    scheduler = LMSDiscreteScheduler(
        beta_start=0.00085,
        beta_end=0.012,
        beta_schedule="scaled_linear",
        num_train_timesteps=1000
    )
    pipe.scheduler = scheduler  # Set the scheduler
    
    # Create prompt text
    prompt_text = f"{prompt} {concept}"
    
    # Predefined seeds for each loss function
    seeds = {
        'none': 42,
        'blue': 123,
        'elastic': 456,
        'symmetry': 789,
        'saturation': 1000
    }
    
    loss_functions = ['none', 'blue', 'elastic', 'symmetry', 'saturation']
    images = []
    progress = gr.Progress()
    
    # Generate image for each loss function
    for idx, loss_type in enumerate(loss_functions):
        progress(idx/len(loss_functions), f"Generating {loss_type} image...")
        generator = torch.manual_seed(seeds[loss_type])
        
        # Generate base image
        try:
            output = pipe(
                prompt_text,
                height=height,
                width=width,
                num_inference_steps=num_inference_steps,
                guidance_scale=guidance_scale,
                generator=generator
            )
        except Exception as e:
            print(f"Error generating image: {e}")
            return None
        
        # Apply loss function if not 'none'
        if loss_type != 'none':
            try:
                # Convert PIL image to tensor and move to device
                image_tensor = T.ToTensor()(output.images[0]).unsqueeze(0).to(device)
                # Apply loss and update image
                loss = image_loss(image_tensor, loss_type, device, elastic_transformer)
                image_tensor = image_tensor - loss_scale * loss
                # Move back to CPU and convert to PIL
                image = T.ToPILImage()(image_tensor.cpu().squeeze(0).clamp(0, 1))
            except Exception as e:
                print(f"Error applying {loss_type} loss: {e}")
                image = output.images[0]  # Use original image if loss fails
        else:
            image = output.images[0]
        
        # Add image with its label
        try:
            # Ensure image is in correct format (PIL.Image)
            if not isinstance(image, Image.Image):
                print(f"Warning: Converting {loss_type} image to PIL format")
                image = Image.fromarray(image)
            
            # Add tuple of (image, label) to list
            images.append((image, f"{loss_type.capitalize()} Loss"))
            print(f"Added {loss_type} image to gallery")  # Debug print
        except Exception as e:
            print(f"Error adding {loss_type} image to gallery: {e}")
            continue
        
        # Clear GPU memory after each image
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            gc.collect()
    
    # Return all generated images
    print(f"Returning {len(images)} images")
    if not images:
        return None
    return images

def create_interface():
    default_prompts = [
        "A realistic image of Boy with a cowboy hat in the style of",
        "A realistic image of Rabbit in a spacesuit in the style of",
        "A rugged soldier in full combat gear, standing on a battlefield at dusk, dramatic lighting, highly detailed, cinematic style in the style of"
    ]
    
    concepts = [
        "dreams",
        "midjourney-style",
        "moebius",
        "marc-allante",
        "wlop"
    ]
    
    interface = gr.Interface(
        fn=generate_images,
        inputs=[
            gr.Dropdown(choices=default_prompts, label="Select a preset prompt or type your own", allow_custom_value=True),
            gr.Dropdown(choices=concepts, label="Select SD Concept")
        ],
        outputs=gr.Gallery(
            label="Generated Images (From Left to Right: Original, Blue Loss, Elastic Loss, Symmetry Loss, Saturation Loss)",
            show_label=True,
            elem_id="gallery",
            columns=5,
            rows=1,
            height=512,
            object_fit="contain"
        ),  # Simplified Gallery definition
        title="Stable Diffusion using Text Inversion",
        description="""Generate images using Stable Diffusion with different style concepts. The output shows 5 images side by side:
        1. Original Image (No Loss)
        2. Blue Channel Loss - Enhances blue tones
        3. Elastic Loss - Adds elastic deformation
        4. Symmetry Loss - Enforces symmetrical features
        5. Saturation Loss - Modifies color saturation
        
        Note: Image generation may take several minutes. Please be patient while the images are being processed.""",
        flagging_mode="never"  # Updated from allow_flagging
    )
    
    return interface

if __name__ == "__main__":
    interface = create_interface()
    interface.queue(max_size=5)  # Simplified queue configuration
    interface.launch(
        share=True, 
        server_name="0.0.0.0",
        max_threads=1
    )