MilindChawre commited on
Commit
269022b
·
1 Parent(s): 048d5e5

Fix the diffussion model code

Browse files
Files changed (1) hide show
  1. app.py +17 -22
app.py CHANGED
@@ -90,7 +90,7 @@ def generate_images(prompt, concept):
90
 
91
  for idx, loss_type in enumerate(loss_functions):
92
  try:
93
- # Add detailed progress reporting
94
  progress(idx/len(loss_functions), f"Starting {loss_type} image generation...")
95
 
96
  # Better memory management
@@ -149,7 +149,13 @@ def generate_images(prompt, concept):
149
  latents = latents * scheduler.init_noise_sigma
150
 
151
  # Diffusion process
 
152
  for i, t in enumerate(scheduler.timesteps):
 
 
 
 
 
153
  latent_model_input = torch.cat([latents] * 2)
154
  sigma = scheduler.sigmas[i]
155
  latent_model_input = scheduler.scale_model_input(latent_model_input, t)
@@ -177,33 +183,21 @@ def generate_images(prompt, concept):
177
  denoised_images = pipe.vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5
178
  denoised_images = denoised_images.requires_grad_() # Enable gradients for images
179
  loss = image_loss(denoised_images, loss_type, device, elastic_transformer)
180
- cond_grad = torch.autograd.grad(loss * loss_scale, latents)[0]
 
 
 
181
 
182
  latents = latents.detach() - cond_grad * sigma**2
183
-
184
- # Diffusion process with progress updates
185
- for i, t in enumerate(scheduler.timesteps):
186
- current_progress = (idx + (i / len(scheduler.timesteps))) / len(loss_functions)
187
- progress(current_progress, f"Generating {loss_type} image: Step {i+1}/{len(scheduler.timesteps)}")
188
-
189
- # Apply loss less frequently for speed
190
- if loss_type != 'none' and i % 8 == 0: # Changed from 5 to 8
191
- with torch.set_grad_enabled(True):
192
- # Enable gradients for images
193
- denoised_images = pipe.vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5
194
- denoised_images = denoised_images.requires_grad_() # Enable gradients for images
195
- loss = image_loss(denoised_images, loss_type, device, elastic_transformer)
196
- cond_grad = torch.autograd.grad(loss * loss_scale, latents)[0]
197
-
198
- latents = latents.detach() - cond_grad * sigma**2
199
-
200
  latents = scheduler.step(noise_pred, t, latents).prev_sample
201
 
202
  # Clear CUDA cache more efficiently
203
  if torch.cuda.is_available() and i % 10 == 0:
204
  torch.cuda.empty_cache()
205
 
206
- progress(idx/len(loss_functions), f"Finalizing {loss_type} image...")
 
207
 
208
  # Proper latent to image conversion
209
  latents = (1 / 0.18215) * latents
@@ -220,12 +214,13 @@ def generate_images(prompt, concept):
220
 
221
  except Exception as e:
222
  print(f"Error generating {loss_type} image: {e}")
223
- continue # Continue to next loss type instead of returning None
224
 
225
- # At the end of the function
226
  try:
227
  if len(all_images) == 0:
228
  raise Exception("No images were generated successfully")
 
229
  return [img for img, _ in all_images]
230
  except Exception as e:
231
  print(f"Error in generate_images: {e}")
 
90
 
91
  for idx, loss_type in enumerate(loss_functions):
92
  try:
93
+ print(f"\n[{loss_type.upper()}] Starting image generation...")
94
  progress(idx/len(loss_functions), f"Starting {loss_type} image generation...")
95
 
96
  # Better memory management
 
149
  latents = latents * scheduler.init_noise_sigma
150
 
151
  # Diffusion process
152
+ total_steps = len(scheduler.timesteps)
153
  for i, t in enumerate(scheduler.timesteps):
154
+ current_progress = (idx + (i / total_steps)) / len(loss_functions)
155
+ progress_msg = f"[{loss_type.upper()}] Step {i+1}/{total_steps} ({(i+1)/total_steps*100:.1f}%)"
156
+ print(progress_msg)
157
+ progress(current_progress, progress_msg)
158
+
159
  latent_model_input = torch.cat([latents] * 2)
160
  sigma = scheduler.sigmas[i]
161
  latent_model_input = scheduler.scale_model_input(latent_model_input, t)
 
183
  denoised_images = pipe.vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5
184
  denoised_images = denoised_images.requires_grad_() # Enable gradients for images
185
  loss = image_loss(denoised_images, loss_type, device, elastic_transformer)
186
+ # Ensure latents_x0 requires grad
187
+ if not latents_x0.requires_grad:
188
+ latents_x0 = latents_x0.requires_grad_()
189
+ cond_grad = torch.autograd.grad(loss * loss_scale, latents_x0)[0]
190
 
191
  latents = latents.detach() - cond_grad * sigma**2
192
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
193
  latents = scheduler.step(noise_pred, t, latents).prev_sample
194
 
195
  # Clear CUDA cache more efficiently
196
  if torch.cuda.is_available() and i % 10 == 0:
197
  torch.cuda.empty_cache()
198
 
199
+ # Remove the nested diffusion loop and move finalization outside
200
+ progress(idx/len(loss_functions), f"Finalizing {loss_type} image...")
201
 
202
  # Proper latent to image conversion
203
  latents = (1 / 0.18215) * latents
 
214
 
215
  except Exception as e:
216
  print(f"Error generating {loss_type} image: {e}")
217
+ continue
218
 
219
+ # At the end of the function, outside the loop
220
  try:
221
  if len(all_images) == 0:
222
  raise Exception("No images were generated successfully")
223
+ print("\nAll images generated successfully!")
224
  return [img for img, _ in all_images]
225
  except Exception as e:
226
  print(f"Error in generate_images: {e}")