Spaces:
Running
Running
File size: 9,769 Bytes
48c5871 85b3f9b 48c5871 85b3f9b e9cd82f 48c5871 e9cd82f 48c5871 e9cd82f 48c5871 85b3f9b 48c5871 85b3f9b 48c5871 e9cd82f 940c64c 48c5871 e9cd82f 48c5871 e9cd82f 48c5871 e27d8ac 48c5871 85b3f9b e9cd82f 85b3f9b e9cd82f 85b3f9b 940c64c 85b3f9b 940c64c 85b3f9b 940c64c 85b3f9b 940c64c 85b3f9b 940c64c 85b3f9b 940c64c 48c5871 9930d3e 48c5871 940c64c 85b3f9b 940c64c 85b3f9b 940c64c 85b3f9b 940c64c e9cd82f 940c64c e9cd82f 940c64c 85b3f9b 940c64c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import gradio as gr
import os
import cv2
import torch
import numpy as np
import argparse
import torch.nn as nn
import torch.nn.functional as F
import gc
from baseline.DRL.actor import *
from baseline.Renderer.stroke_gen import *
from baseline.Renderer.model import *
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
width = 128
actor_path = 'ckpts/actor.pkl'
renderer_path = 'ckpts/renderer.pkl'
#
divide = 4
canvas_cnt = divide * divide
Decoder = FCN()
Decoder.load_state_dict(torch.load(renderer_path))
actor = ResNet(9, 18, 65) # action_bundle = 5, 65 = 5 * 13
actor.load_state_dict(torch.load(actor_path))
actor = actor.to(device).eval()
Decoder = Decoder.to(device).eval()
decoders = {"Default": Decoder}
actors = {"Default": actor}
def decode(x, canvas, decoder = Decoder): # b * (10 + 3)
x = x.view(-1, 10 + 3)
stroke = 1 - decoder(x[:, :10])
stroke = stroke.view(-1, width, width, 1)
color_stroke = stroke * x[:, -3:].view(-1, 1, 1, 3)
stroke = stroke.permute(0, 3, 1, 2)
color_stroke = color_stroke.permute(0, 3, 1, 2)
stroke = stroke.view(-1, 5, 1, width, width)
color_stroke = color_stroke.view(-1, 5, 3, width, width)
res = []
for i in range(5):
canvas = canvas * (1 - stroke[:, i]) + color_stroke[:, i]
res.append(canvas)
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
return canvas, res
def small2large(x):
# (d * d, width, width) -> (d * width, d * width)
x = x.reshape(divide, divide, width, width, -1)
x = np.transpose(x, (0, 2, 1, 3, 4))
x = x.reshape(divide * width, divide * width, -1)
return x
def large2small(x):
# (d * width, d * width) -> (d * d, width, width)
x = x.reshape(divide, width, divide, width, 3)
x = np.transpose(x, (0, 2, 1, 3, 4))
x = x.reshape(canvas_cnt, width, width, 3)
return x
def smooth(img):
def smooth_pix(img, tx, ty):
if tx == divide * width - 1 or ty == divide * width - 1 or tx == 0 or ty == 0:
return img
img[tx, ty] = (img[tx, ty] + img[tx + 1, ty] + img[tx, ty + 1] + img[tx - 1, ty] + img[tx, ty - 1] + img[tx + 1, ty - 1] + img[tx - 1, ty + 1] + img[tx - 1, ty - 1] + img[tx + 1, ty + 1]) / 9
return img
for p in range(divide):
for q in range(divide):
x = p * width
y = q * width
for k in range(width):
img = smooth_pix(img, x + k, y + width - 1)
if q != divide - 1:
img = smooth_pix(img, x + k, y + width)
for k in range(width):
img = smooth_pix(img, x + width - 1, y + k)
if p != divide - 1:
img = smooth_pix(img, x + width, y + k)
return img
def save_img(res, imgid, origin_shape, output_name, divide=False):
output = res.detach().cpu().numpy() # d * d, 3, width, width
output = np.transpose(output, (0, 2, 3, 1))
if divide:
output = small2large(output)
output = smooth(output)
else:
output = output[0]
output = (output * 255).astype('uint8')
output = cv2.resize(output, origin_shape)
cv2.imwrite(output_name +"/" + str(imgid) + '.jpg', output)
def paint_img(img, max_step = 40, model_choices = "Default"):
Decoder = decoders[model_choices]
actor = actors[model_choices]
max_step = int(max_step)
# imgid = 0
# output_name = os.path.join('output', str(len(os.listdir('output'))) if os.path.exists('output') else '0')
# os.makedirs(output_name, exist_ok= True)
# img = cv2.imread(args.img, cv2.IMREAD_COLOR)
origin_shape = (img.shape[1], img.shape[0])
patch_img = cv2.resize(img, (width * divide, width * divide))
patch_img = large2small(patch_img)
patch_img = np.transpose(patch_img, (0, 3, 1, 2))
patch_img = torch.tensor(patch_img).to(device).float() / 255.
img = cv2.resize(img, (width, width))
img = img.reshape(1, width, width, 3)
img = np.transpose(img, (0, 3, 1, 2))
img = torch.tensor(img).to(device).float() / 255.
T = torch.ones([1, 1, width, width], dtype=torch.float32).to(device)
coord = torch.zeros([1, 2, width, width])
for i in range(width):
for j in range(width):
coord[0, 0, i, j] = i / (width - 1.)
coord[0, 1, i, j] = j / (width - 1.)
coord = coord.to(device) # Coordconv
canvas = torch.zeros([1, 3, width, width]).to(device)
with torch.no_grad():
if divide != 1:
max_step = max_step // 2
for i in range(max_step):
stepnum = T * i / max_step
actions = actor(torch.cat([canvas, img, stepnum, coord], 1))
canvas, res = decode(actions, canvas, Decoder)
for j in range(5):
# save_img(res[j], imgid)
# imgid += 1
output = res[j].detach().cpu().numpy() # d * d, 3, width, width
output = np.transpose(output, (0, 2, 3, 1))
output = output[0]
output = (output * 255).astype('uint8')
output = cv2.resize(output, origin_shape)
yield output
if divide != 1:
canvas = canvas[0].detach().cpu().numpy()
canvas = np.transpose(canvas, (1, 2, 0))
canvas = cv2.resize(canvas, (width * divide, width * divide))
canvas = large2small(canvas)
canvas = np.transpose(canvas, (0, 3, 1, 2))
canvas = torch.tensor(canvas).to(device).float()
coord = coord.expand(canvas_cnt, 2, width, width)
T = T.expand(canvas_cnt, 1, width, width)
for i in range(max_step):
stepnum = T * i / max_step
actions = actor(torch.cat([canvas, patch_img, stepnum, coord], 1))
canvas, res = decode(actions, canvas, Decoder)
# print('divided canvas step {}, L2Loss = {}'.format(i, ((canvas - patch_img) ** 2).mean()))
for j in range(5):
# save_img(res[j], imgid, True)
# imgid += 1
output = res[j].detach().cpu().numpy() # d * d, 3, width, width
output = np.transpose(output, (0, 2, 3, 1))
output = small2large(output)
output = smooth(output)
output = (output * 255).astype('uint8')
output = cv2.resize(output, origin_shape)
yield output
yield output
def load_model_if_needed(choice: str):
# global Decoder, actor
if choice == "Default":
actor_path = 'ckpts/actor.pkl'
renderer_path = 'ckpts/renderer.pkl'
elif choice == "Triangle":
actor_path = 'ckpts/actor_triangle.pkl'
renderer_path = 'ckpts/triangle.pkl'
elif choice == "Round":
actor_path = 'ckpts/actor_round.pkl'
renderer_path = 'ckpts/round.pkl'
else:
actor_path = 'ckpts/actor_notrans.pkl'
renderer_path = 'ckpts/bezierwotrans.pkl'
if choice not in decoders:
Decoder = FCN()
Decoder.load_state_dict(torch.load(renderer_path, map_location= "cpu"))
Decoder = Decoder.to(device).eval()
decoders[choice] = Decoder
if choice not in actors:
actor = ResNet(9, 18, 65) # action_bundle = 5, 65 = 5 * 13
actor.load_state_dict(torch.load(actor_path, map_location= "cpu"))
actor = actor.to(device).eval()
actors[choice] = actor
from typing import Generator
def wrapper(func):
event:Generator = range(0)
def inner(*args, **kwargs):
nonlocal event
val = args[0]
if val == "Cancel":
args_ = tuple(x for i,x in enumerate(args) if i > 0)
event = func(*args_, **kwargs)
yield from event
else:
try:
event.close()
yield
except:
pass
return inner
examples = [
["image/chaoyue.png"],
["image/degang.png"],
["image/JayChou.png"],
["image/Leslie.png"],
["image/mayun.png"],
]
output = gr.Image(label="Painting Result")
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input image")
with gr.Row():
step = gr.Slider(20, 100, value= 40, step = 1, label= 'Painting step')
with gr.Row():
dropdown = gr.Dropdown(['Default', 'Round', 'Triangle', 'Bezier wo trans'], value= 'Default', label= 'Stroke choice')
with gr.Row():
with gr.Column():
clr_btn = gr.ClearButton([input_image, output], variant= "stop")
with gr.Column():
translate_btn = gr.Button(value="Paint", variant="primary")
with gr.Column():
output.render()
dropdown.select(load_model_if_needed, dropdown)
click_event = translate_btn.click(lambda x: gr.Button(value="Cancel", variant="stop") if x == "Paint" else gr.Button(value="Paint", variant="primary"), translate_btn, translate_btn)\
.then(wrapper(paint_img), inputs=[translate_btn, input_image, step, dropdown], outputs=output, trigger_mode = 'multiple')\
.then(lambda x: gr.Button(value="Paint", variant="primary"), translate_btn, translate_btn)
clr_btn.click(None, None, cancels=[click_event])
examples = gr.Examples(examples=examples,
inputs=[input_image], cache_examples = False)
# demo = gr.Interface(fn=paint_img, inputs=gr.Image(), outputs="image", examples = examples)
demo.queue(default_concurrency_limit= 4)
demo.launch(server_name="0.0.0.0", ) |