Spaces:
Running
Running
File size: 1,208 Bytes
48c5871 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.utils.weight_norm as weightNorm
class FCN(nn.Module):
def __init__(self):
super(FCN, self).__init__()
self.fc1 = (nn.Linear(10, 512))
self.fc2 = (nn.Linear(512, 1024))
self.fc3 = (nn.Linear(1024, 2048))
self.fc4 = (nn.Linear(2048, 4096))
self.conv1 = (nn.Conv2d(16, 32, 3, 1, 1))
self.conv2 = (nn.Conv2d(32, 32, 3, 1, 1))
self.conv3 = (nn.Conv2d(8, 16, 3, 1, 1))
self.conv4 = (nn.Conv2d(16, 16, 3, 1, 1))
self.conv5 = (nn.Conv2d(4, 8, 3, 1, 1))
self.conv6 = (nn.Conv2d(8, 4, 3, 1, 1))
self.pixel_shuffle = nn.PixelShuffle(2)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.relu(self.fc3(x))
x = F.relu(self.fc4(x))
x = x.view(-1, 16, 16, 16)
x = F.relu(self.conv1(x))
x = self.pixel_shuffle(self.conv2(x))
x = F.relu(self.conv3(x))
x = self.pixel_shuffle(self.conv4(x))
x = F.relu(self.conv5(x))
x = self.pixel_shuffle(self.conv6(x))
x = torch.sigmoid(x)
return 1 - x.view(-1, 128, 128)
|