import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.optim import Adam, SGD from Renderer.model import * from DRL.rpm import rpm from DRL.actor import * from DRL.critic import * from DRL.wgan import * from utils.util import * device = torch.device("cuda" if torch.cuda.is_available() else "cpu") coord = torch.zeros([1, 2, 128, 128]) for i in range(128): for j in range(128): coord[0, 0, i, j] = i / 127. coord[0, 1, i, j] = j / 127. coord = coord.to(device) criterion = nn.MSELoss() Decoder = FCN() Decoder.load_state_dict(torch.load('../renderer.pkl')) def decode(x, canvas): # b * (10 + 3) x = x.view(-1, 10 + 3) stroke = 1 - Decoder(x[:, :10]) stroke = stroke.view(-1, 128, 128, 1) color_stroke = stroke * x[:, -3:].view(-1, 1, 1, 3) stroke = stroke.permute(0, 3, 1, 2) color_stroke = color_stroke.permute(0, 3, 1, 2) stroke = stroke.view(-1, 5, 1, 128, 128) color_stroke = color_stroke.view(-1, 5, 3, 128, 128) for i in range(5): canvas = canvas * (1 - stroke[:, i]) + color_stroke[:, i] return canvas def cal_trans(s, t): return (s.transpose(0, 3) * t).transpose(0, 3) class DDPG(object): def __init__(self, batch_size=64, env_batch=1, max_step=40, \ tau=0.001, discount=0.9, rmsize=800, \ writer=None, resume=None, output_path=None): self.max_step = max_step self.env_batch = env_batch self.batch_size = batch_size self.actor = ResNet(9, 18, 65) # target, canvas, stepnum, coordconv 3 + 3 + 1 + 2 self.actor_target = ResNet(9, 18, 65) self.critic = ResNet_wobn(3 + 9, 18, 1) # add the last canvas for better prediction self.critic_target = ResNet_wobn(3 + 9, 18, 1) self.actor_optim = Adam(self.actor.parameters(), lr=1e-2) self.critic_optim = Adam(self.critic.parameters(), lr=1e-2) if (resume != None): self.load_weights(resume) hard_update(self.actor_target, self.actor) hard_update(self.critic_target, self.critic) # Create replay buffer self.memory = rpm(rmsize * max_step) # Hyper-parameters self.tau = tau self.discount = discount # Tensorboard self.writer = writer self.log = 0 self.state = [None] * self.env_batch # Most recent state self.action = [None] * self.env_batch # Most recent action self.choose_device() def play(self, state, target=False): state = torch.cat((state[:, :6].float() / 255, state[:, 6:7].float() / self.max_step, coord.expand(state.shape[0], 2, 128, 128)), 1) if target: return self.actor_target(state) else: return self.actor(state) def update_gan(self, state): canvas = state[:, :3] gt = state[:, 3 : 6] fake, real, penal = update(canvas.float() / 255, gt.float() / 255) if self.log % 20 == 0: self.writer.add_scalar('train/gan_fake', fake, self.log) self.writer.add_scalar('train/gan_real', real, self.log) self.writer.add_scalar('train/gan_penal', penal, self.log) def evaluate(self, state, action, target=False): T = state[:, 6 : 7] gt = state[:, 3 : 6].float() / 255 canvas0 = state[:, :3].float() / 255 canvas1 = decode(action, canvas0) gan_reward = cal_reward(canvas1, gt) - cal_reward(canvas0, gt) # L2_reward = ((canvas0 - gt) ** 2).mean(1).mean(1).mean(1) - ((canvas1 - gt) ** 2).mean(1).mean(1).mean(1) coord_ = coord.expand(state.shape[0], 2, 128, 128) merged_state = torch.cat([canvas0, canvas1, gt, (T + 1).float() / self.max_step, coord_], 1) # canvas0 is not necessarily added if target: Q = self.critic_target(merged_state) return (Q + gan_reward), gan_reward else: Q = self.critic(merged_state) if self.log % 20 == 0: self.writer.add_scalar('train/expect_reward', Q.mean(), self.log) self.writer.add_scalar('train/gan_reward', gan_reward.mean(), self.log) return (Q + gan_reward), gan_reward def update_policy(self, lr): self.log += 1 for param_group in self.critic_optim.param_groups: param_group['lr'] = lr[0] for param_group in self.actor_optim.param_groups: param_group['lr'] = lr[1] # Sample batch state, action, reward, \ next_state, terminal = self.memory.sample_batch(self.batch_size, device) self.update_gan(next_state) with torch.no_grad(): next_action = self.play(next_state, True) target_q, _ = self.evaluate(next_state, next_action, True) target_q = self.discount * ((1 - terminal.float()).view(-1, 1)) * target_q cur_q, step_reward = self.evaluate(state, action) target_q += step_reward.detach() value_loss = criterion(cur_q, target_q) self.critic.zero_grad() value_loss.backward(retain_graph=True) self.critic_optim.step() action = self.play(state) pre_q, _ = self.evaluate(state.detach(), action) policy_loss = -pre_q.mean() self.actor.zero_grad() policy_loss.backward(retain_graph=True) self.actor_optim.step() # Target update soft_update(self.actor_target, self.actor, self.tau) soft_update(self.critic_target, self.critic, self.tau) return -policy_loss, value_loss def observe(self, reward, state, done, step): s0 = torch.tensor(self.state, device='cpu') a = to_tensor(self.action, "cpu") r = to_tensor(reward, "cpu") s1 = torch.tensor(state, device='cpu') d = to_tensor(done.astype('float32'), "cpu") for i in range(self.env_batch): self.memory.append([s0[i], a[i], r[i], s1[i], d[i]]) self.state = state def noise_action(self, noise_factor, state, action): noise = np.zeros(action.shape) for i in range(self.env_batch): action[i] = action[i] + np.random.normal(0, self.noise_level[i], action.shape[1:]).astype('float32') return np.clip(action.astype('float32'), 0, 1) def select_action(self, state, return_fix=False, noise_factor=0): self.eval() with torch.no_grad(): action = self.play(state) action = to_numpy(action) if noise_factor > 0: action = self.noise_action(noise_factor, state, action) self.train() self.action = action if return_fix: return action return self.action def reset(self, obs, factor): self.state = obs self.noise_level = np.random.uniform(0, factor, self.env_batch) def load_weights(self, path): if path is None: return self.actor.load_state_dict(torch.load('{}/actor.pkl'.format(path))) self.critic.load_state_dict(torch.load('{}/critic.pkl'.format(path))) load_gan(path) def save_model(self, path): self.actor.cpu() self.critic.cpu() torch.save(self.actor.state_dict(),'{}/actor.pkl'.format(path)) torch.save(self.critic.state_dict(),'{}/critic.pkl'.format(path)) save_gan(path) self.choose_device() def eval(self): self.actor.eval() self.actor_target.eval() self.critic.eval() self.critic_target.eval() def train(self): self.actor.train() self.actor_target.train() self.critic.train() self.critic_target.train() def choose_device(self): Decoder.to(device) self.actor.to(device) self.actor_target.to(device) self.critic.to(device) self.critic_target.to(device)