Spaces:
Running
Running
File size: 12,903 Bytes
a892bc4 5cc4e87 a892bc4 e49c2da 5cc4e87 a892bc4 5cc4e87 e49c2da 5cc4e87 e49c2da 5cc4e87 a892bc4 5cc4e87 a892bc4 5cc4e87 e49c2da 5cc4e87 a892bc4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
import base64
import gradio as gr
import json
import mimetypes
import os
import requests
import time
import modelscope_studio.components.antd as antd
import modelscope_studio.components.antdx as antdx
import modelscope_studio.components.base as ms
import modelscope_studio.components.pro as pro
from modelscope_studio.components.pro.chatbot import (
ChatbotActionConfig, ChatbotBotConfig, ChatbotMarkdownConfig,
ChatbotPromptsConfig, ChatbotUserConfig, ChatbotWelcomeConfig)
MODEL_VERSION = os.environ['MODEL_VERSION']
API_URL = os.environ['API_URL']
API_KEY = os.environ['API_KEY']
SYSTEM_PROMPT = os.environ.get('SYSTEM_PROMPT')
MULTIMODAL_FLAG = os.environ.get('MULTIMODAL')
MODEL_CONTROL_DEFAULTS = json.loads(os.environ['MODEL_CONTROL_DEFAULTS'])
NAME_MAP = {
'system': os.environ.get('SYSTEM_NAME'),
'user': os.environ.get('USER_NAME'),
}
MODEL_NAME = 'MiniMax-M1'
def prompt_select(e: gr.EventData):
return gr.update(value=e._data["payload"][0]["value"]["description"])
def clear():
return gr.update(value=None)
def retry(chatbot_value, e: gr.EventData):
index = e._data["payload"][0]["index"]
chatbot_value = chatbot_value[:index]
yield gr.update(loading=True), gr.update(value=chatbot_value), gr.update(disabled=True)
for chunk in submit(None, chatbot_value):
yield chunk
def cancel(chatbot_value):
chatbot_value[-1]["loading"] = False
chatbot_value[-1]["status"] = "done"
chatbot_value[-1]["footer"] = "Chat completion paused"
return gr.update(value=chatbot_value), gr.update(loading=False), gr.update(disabled=False)
def add_name_for_message(message):
name = NAME_MAP.get(message['role'])
if name is not None:
message['name'] = name
def convert_content(content):
if isinstance(content, str):
return content
if isinstance(content, tuple):
return [{
'type': 'image_url',
'image_url': {
'url': encode_base64(content[0]),
},
}]
content_list = []
for key, val in content.items():
if key == 'text':
content_list.append({
'type': 'text',
'text': val,
})
elif key == 'files':
for f in val:
content_list.append({
'type': 'image_url',
'image_url': {
'url': encode_base64(f),
},
})
return content_list
def encode_base64(path):
guess_type = mimetypes.guess_type(path)[0]
if not guess_type.startswith('image/'):
raise gr.Error('not an image ({}): {}'.format(guess_type, path))
with open(path, 'rb') as handle:
data = handle.read()
return 'data:{};base64,{}'.format(
guess_type,
base64.b64encode(data).decode(),
)
def format_history(history):
"""Convert chatbot history format to API call format"""
messages = []
if SYSTEM_PROMPT is not None:
messages.append({
'role': 'system',
'content': SYSTEM_PROMPT,
})
for item in history:
if item["role"] == "user":
messages.append({
'role': 'user',
'content': convert_content(item["content"]),
})
elif item["role"] == "assistant":
# Extract reasoning content and main content
reasoning_content = ""
main_content = ""
if isinstance(item["content"], list):
for content_item in item["content"]:
if content_item.get("type") == "tool":
reasoning_content = content_item.get("content", "")
elif content_item.get("type") == "text":
main_content = content_item.get("content", "")
else:
main_content = item["content"]
messages.append({
'role': 'assistant',
'content': convert_content(main_content),
'reasoning_content': convert_content(reasoning_content),
})
return messages
def submit(sender_value, chatbot_value):
if sender_value is not None:
chatbot_value.append({
"role": "user",
"content": sender_value,
})
api_messages = format_history(chatbot_value)
for message in api_messages:
add_name_for_message(message)
chatbot_value.append({
"role": "assistant",
"content": [],
"loading": True,
"status": "pending"
})
yield {
sender: gr.update(value=None, loading=True),
clear_btn: gr.update(disabled=True),
chatbot: gr.update(value=chatbot_value)
}
try:
data = {
'model': MODEL_VERSION,
'messages': api_messages,
'stream': True,
'max_tokens': MODEL_CONTROL_DEFAULTS['tokens_to_generate'],
'temperature': MODEL_CONTROL_DEFAULTS['temperature'],
'top_p': MODEL_CONTROL_DEFAULTS['top_p'],
}
r = requests.post(
API_URL,
headers={
'Content-Type': 'application/json',
'Authorization': 'Bearer {}'.format(API_KEY),
},
data=json.dumps(data),
stream=True,
)
thought_done = False
start_time = time.time()
message_content = chatbot_value[-1]["content"]
# Reasoning content (tool type)
message_content.append({
"copyable": False,
"editable": False,
"type": "tool",
"content": "",
"options": {
"title": "π€ Thinking..."
}
})
# Main content (text type)
message_content.append({
"type": "text",
"content": "",
})
reasoning_start_time = None
reasoning_duration = None
for row in r.iter_lines():
if row.startswith(b'data:'):
data = json.loads(row[5:])
if 'choices' not in data:
raise gr.Error('request failed')
choice = data['choices'][0]
if 'delta' in choice:
delta = choice['delta']
reasoning_content = delta.get('reasoning_content', '')
content = delta.get('content', '')
chatbot_value[-1]["loading"] = False
# Handle reasoning content
if reasoning_content:
if reasoning_start_time is None:
reasoning_start_time = time.time()
message_content[-2]["content"] += reasoning_content
# Handle main content
if content:
message_content[-1]["content"] += content
if not thought_done:
thought_done = True
if reasoning_start_time is not None:
reasoning_duration = time.time() - reasoning_start_time
thought_cost_time = "{:.2f}".format(reasoning_duration)
else:
reasoning_duration = 0.0
thought_cost_time = "0.00"
message_content[-2]["options"]["title"] = f"End of Thought ({thought_cost_time}s)"
message_content[-2]["options"]["status"] = "done"
yield {chatbot: gr.update(value=chatbot_value)}
elif 'message' in choice:
message_data = choice['message']
reasoning_content = message_data.get('reasoning_content', '')
main_content = message_data.get('content', '')
message_content[-2]["content"] = reasoning_content
message_content[-1]["content"] = main_content
if reasoning_content and main_content:
if reasoning_duration is None:
if reasoning_start_time is not None:
reasoning_duration = time.time() - reasoning_start_time
thought_cost_time = "{:.2f}".format(reasoning_duration)
else:
reasoning_duration = 0.0
thought_cost_time = "0.00"
else:
thought_cost_time = "{:.2f}".format(reasoning_duration)
message_content[-2]["options"]["title"] = f"End of Thought ({thought_cost_time}s)"
message_content[-2]["options"]["status"] = "done"
chatbot_value[-1]["loading"] = False
yield {chatbot: gr.update(value=chatbot_value)}
chatbot_value[-1]["footer"] = "{:.2f}s".format(time.time() - start_time)
chatbot_value[-1]["status"] = "done"
yield {
clear_btn: gr.update(disabled=False),
sender: gr.update(loading=False),
chatbot: gr.update(value=chatbot_value),
}
except Exception as e:
chatbot_value[-1]["loading"] = False
chatbot_value[-1]["status"] = "done"
chatbot_value[-1]["content"] = "Request failed, please try again."
yield {
clear_btn: gr.update(disabled=False),
sender: gr.update(loading=False),
chatbot: gr.update(value=chatbot_value),
}
raise e
with gr.Blocks() as demo, ms.Application(), antdx.XProvider():
with antd.Flex(vertical=True, gap="middle"):
chatbot = pro.Chatbot(
height="calc(100vh - 200px)",
welcome_config=ChatbotWelcomeConfig(
variant="borderless",
icon="./assets/minimax-logo.png",
title="Hello, I'm MiniMax-M1",
description="You can input text to get started.",
prompts=ChatbotPromptsConfig(
title="How can I help you today?",
styles={
"list": {
"width": '100%',
},
"item": {
"flex": 1,
},
},
items=[{
"label": "π€ Logical Reasoning",
"children": [{
"description": "A is taller than B, B is shorter than C. Who is taller, A or C?"
}, {
"description": "Alice put candy in the drawer and went out. Bob moved the candy to the cabinet. Where will Alice look for the candy when she returns?"
}]
}, {
"label": "π Knowledge Q&A",
"children": [{
"description": "Can you tell me about middle school mathematics?"
}, {
"description": "If Earth's gravity suddenly halved, what would happen to the height humans can jump?"
}]
}])),
user_config=ChatbotUserConfig(actions=["copy", "edit"]),
bot_config=ChatbotBotConfig(
header=MODEL_NAME,
avatar="./assets/minimax-logo.png",
actions=["copy", "retry"]
),
)
with antdx.Sender() as sender:
with ms.Slot("prefix"):
with antd.Button(value=None, color="default", variant="text") as clear_btn:
with ms.Slot("icon"):
antd.Icon("ClearOutlined")
clear_btn.click(fn=clear, outputs=[chatbot])
submit_event = sender.submit(
fn=submit,
inputs=[sender, chatbot],
outputs=[sender, chatbot, clear_btn]
)
sender.cancel(
fn=cancel,
inputs=[chatbot],
outputs=[chatbot, sender, clear_btn],
cancels=[submit_event],
queue=False
)
chatbot.retry(
fn=retry,
inputs=[chatbot],
outputs=[sender, chatbot, clear_btn]
)
chatbot.welcome_prompt_select(fn=prompt_select, outputs=[sender])
if __name__ == '__main__':
demo.queue(default_concurrency_limit=50).launch()
|