depth2img / app.py
amankishore's picture
Depth2Img Mirage
ef2e9bf
raw
history blame
6.48 kB
import gradio as gr
import torch
from PIL import Image
import numpy as np
from diffusers import StableDiffusionDepth2ImgPipeline
from pathlib import Path
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
dept2img = StableDiffusionDepth2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-depth",
torch_dtype=torch.float16,
).to(device)
css = '''
.instruction{position: absolute; top: 0;right: 0;margin-top: 0px !important}
.arrow{position: absolute;top: 0;right: -110px;margin-top: -8px !important}
#component-4, #component-3, #component-10{min-height: 0}
.duplicate-button img{margin: 0}
'''
def pad_image(input_image):
pad_w, pad_h = np.max(((2, 2), np.ceil(
np.array(input_image.size) / 64).astype(int)), axis=0) * 64 - input_image.size
im_padded = Image.fromarray(
np.pad(np.array(input_image), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge'))
w, h = im_padded.size
if w == h:
return im_padded
elif w > h:
new_image = Image.new(im_padded.mode, (w, w), (0, 0, 0))
new_image.paste(im_padded, (0, (w - h) // 2))
return new_image
else:
new_image = Image.new(im_padded.mode, (h, h), (0, 0, 0))
new_image.paste(im_padded, ((h - w) // 2, 0))
return new_image
def predict(input_image, prompt, negative_prompt, steps, num_samples, scale, seed, strength, depth_image=None):
depth = None
if depth_image is not None:
depth_image = pad_image(depth_image)
depth_image = depth_image.resize((512, 512))
depth = np.array(depth_image.convert("L"))
depth = depth.astype(np.float32) / 255.0
depth = depth[None, None]
depth = torch.from_numpy(depth)
init_image = input_image.convert("RGB")
image = pad_image(init_image) # resize to integer multiple of 32
image = image.resize((512, 512))
result = dept2img(
image=image,
prompt=prompt,
negative_prompt=negative_prompt,
depth_image=depth,
seed=seed,
strength=strength,
num_inference_steps=steps,
guidance_scale=scale,
num_images_per_prompt=num_samples,
)
return result['images']
block = gr.Blocks().queue()
with block:
with gr.Row():
with gr.Column():
top_description = gr.HTML(f'''
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<div>
<img class="logo" src="file/mirage.png" alt="Mirage Logo"
style="margin: auto; max-width: 7rem;">
<br />
<h1 style="font-weight: 900; font-size: 2.5rem;">
Depth2Img Web UI
</h1>
<br />
<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/MirageML/dreambooth?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a>
</div>
</div>
''')
# gr.Markdown("## Stable Diffusion 2 Depth2Img")
# gr.HTML("<p><a href='https://huggingface.co/spaces/radames/stable-diffusion-depth2img?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a></p>")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="pil")
# depth_image = gr.Image(
# source='upload', type="pil", label="Depth image Optional", value=None)
depth_image = None
prompt = gr.Textbox(label="Prompt")
negative_prompt = gr.Textbox(label="Negative Pompt")
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
num_samples = gr.Slider(
label="Images", minimum=1, maximum=4, value=1, step=1)
steps = gr.Slider(label="Steps", minimum=1,
maximum=100, value=50, step=1)
scale = gr.Slider(
label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1
)
strength = gr.Slider(
label="Strength", minimum=0.0, maximum=1.0, value=0.9, step=0.01
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=2147483647,
step=1,
randomize=True,
)
with gr.Column():
gallery = gr.Gallery(label="Generated images", show_label=False).style(
grid=[2], height="auto")
gr.Examples(
examples=[
["./examples/original_iso.png", "hogwarts castle",
"", 50, 4, 10.0, 123123123, 0.8],
["./examples/original_sword.png", "flaming sword",
"", 50, 4, 9.0, 1734133747, 0.8],
],
inputs=[input_image, prompt, negative_prompt, steps,
num_samples, scale, seed, strength],
outputs=[gallery],
fn=predict,
cache_examples=True,
)
run_button.click(fn=predict, inputs=[input_image, prompt, negative_prompt,
steps, num_samples, scale, seed, strength], outputs=[gallery])
block.launch(show_api=False)