|
import os |
|
from typing import List |
|
|
|
import numpy as np |
|
import pooch |
|
from PIL import Image |
|
from PIL.Image import Image as PILImage |
|
|
|
from .base import BaseSession |
|
|
|
|
|
class SiluetaSession(BaseSession): |
|
def predict(self, img: PILImage, *args, **kwargs) -> List[PILImage]: |
|
ort_outs = self.inner_session.run( |
|
None, |
|
self.normalize( |
|
img, (0.485, 0.456, 0.406), (0.229, 0.224, 0.225), (320, 320) |
|
), |
|
) |
|
|
|
pred = ort_outs[0][:, 0, :, :] |
|
|
|
ma = np.max(pred) |
|
mi = np.min(pred) |
|
|
|
pred = (pred - mi) / (ma - mi) |
|
pred = np.squeeze(pred) |
|
|
|
mask = Image.fromarray((pred * 255).astype("uint8"), mode="L") |
|
mask = mask.resize(img.size, Image.LANCZOS) |
|
|
|
return [mask] |
|
|
|
@classmethod |
|
def download_models(cls, *args, **kwargs): |
|
fname = f"{cls.name()}.onnx" |
|
pooch.retrieve( |
|
"https://github.com/danielgatis/rembg/releases/download/v0.0.0/silueta.onnx", |
|
None |
|
if cls.checksum_disabled(*args, **kwargs) |
|
else "md5:55e59e0d8062d2f5d013f4725ee84782", |
|
fname=fname, |
|
path=cls.u2net_home(*args, **kwargs), |
|
progressbar=True, |
|
) |
|
|
|
return os.path.join(cls.u2net_home(), fname) |
|
|
|
@classmethod |
|
def name(cls, *args, **kwargs): |
|
return "silueta" |
|
|