Mishal23's picture
Create app.py
ec99f56 verified
# Import libraries
import pandas as pd
from fastapi import FastAPI
from fastapi.responses import HTMLResponse
from fastapi.middleware.cors import CORSMiddleware
from sentence_transformers import SentenceTransformer
import faiss
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import gradio as gr
# Load the Dataset from Hugging Face and FAQ CSV
support_data = load_dataset("rjac/e-commerce-customer-support-qa")
# Load FAQ data from a local CSV file directly
faq_data = pd.read_csv("Ecommerce_FAQs.csv")
# Preprocess and Clean Data
faq_data.rename(columns={'prompt': 'Question', 'response': 'Answer'}, inplace=True)
faq_data = faq_data[['Question', 'Answer']]
support_data_df = pd.DataFrame(support_data['train'])
# Extract question-answer pairs from the conversation field
def extract_conversation(data):
try:
parts = data.split("\n\n")
question = parts[1].split(": ", 1)[1] if len(parts) > 1 else ""
answer = parts[2].split(": ", 1)[1] if len(parts) > 2 else ""
return pd.Series({"Question": question, "Answer": answer})
except IndexError:
return pd.Series({"Question": "", "Answer": ""})
# Apply extraction function
support_data_df[['Question', 'Answer']] = support_data_df['conversation'].apply(extract_conversation)
# Combine FAQ data with support data
combined_data = pd.concat([faq_data, support_data_df[['Question', 'Answer']]], ignore_index=True)
# Initialize SBERT Model
model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
# Generate and Index Embeddings for Combined Data
questions = combined_data['Question'].tolist()
embeddings = model.encode(questions, convert_to_tensor=True)
# Create FAISS index
index = faiss.IndexFlatL2(embeddings.shape[1])
index.add(embeddings.cpu().numpy())
# Load your fine-tuned DialoGPT model and tokenizer
tokenizer_gpt = AutoTokenizer.from_pretrained("Mishal23/fine_tuned_dialoGPT_model") # Update with your fine-tuned model path
model_gpt = AutoModelForCausalLM.from_pretrained("Mishal23/fine_tuned_dialoGPT_model") # Update with your fine-tuned model path
# Define Retrieval Function
def retrieve_answer(question):
question_embedding = model.encode([question], convert_to_tensor=True)
question_embedding_np = question_embedding.cpu().numpy()
_, closest_index = index.search(question_embedding_np, k=1)
best_match_idx = closest_index[0][0]
answer = combined_data.iloc[best_match_idx]['Answer']
# If the answer is empty, generate a fallback response
if answer.strip() == "":
return generate_response(question) # Generate a response from DialoGPT
return answer
# Generate response using your fine-tuned DialoGPT model
def generate_response(user_input):
input_ids = tokenizer_gpt.encode(user_input, return_tensors='pt')
chat_history_ids = model_gpt.generate(input_ids, max_length=100, pad_token_id=tokenizer_gpt.eos_token_id)
response = tokenizer_gpt.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
return response if response.strip() else "Oops, I don't know the answer to that."
# Initialize FastAPI app
app = FastAPI()
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Allows all origins
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Define FastAPI route for Gradio interface
@app.get("/")
async def read_root():
return HTMLResponse("""<html>
<head>
<title>E-commerce Support Chatbot</title>
</head>
<body>
<h1>Welcome to the E-commerce Support Chatbot</h1>
<p>Use the Gradio interface to chat with the bot!</p>
</body>
</html>""")
# Gradio Chat Interface for E-commerce Support Chatbot
def chatbot_interface(user_input, chat_history=[]):
# Retrieve response from the knowledge base or generate it
response = retrieve_answer(user_input)
chat_history.append(("User", user_input))
chat_history.append(("Bot", response))
# Format chat history for display
chat_display = []
for sender, message in chat_history:
if sender == "User":
chat_display.append(f"**You**: {message}")
else:
chat_display.append(f"**Bot**: {message}")
return "\n\n".join(chat_display), chat_history
# Set up Gradio Chat Interface with conversational format
iface = gr.Interface(
fn=chatbot_interface,
inputs=[
gr.Textbox(lines=2, placeholder="Type your question here..."),
gr.State([]) # State variable to maintain chat history
],
outputs=[
gr.Markdown(), # Display formatted chat history
gr.State() # Update state
],
title="E-commerce Support Chatbot",
description="Ask questions about order tracking, returns, account help, and more!",
)
# Launch Gradio interface directly
iface.launch()